
J.M. García

Introducción a las Aplicaciones
Web
Programación Web

Evolución de
las aplicaciones Web

As We May Think (Cómo podríamos pensar)
Vennvar Bush (Julio/Septiembre de 1945)

• Artículo de 10 páginas

• ¿Cómo podemos acceder más fácilmente al
conocimiento?

• Memex (Memory Extender):

• Recupera Microfilms y los despliega en múltiples
pantallas.

• Se pueden establecer secuencias asociativas entre
los films, se registran los documentos visitados.

• Se pueden escribir anotaciones en ellos.

Proyecto Xanadú
Es el primer proyecto de hipertexto fundado en 1960 por Ted Nelson.

https://dl.acm.org/doi/pdf/10.1145/800197.806036

• Un documento puede tener
hipervínculos a otros textos y sus
distintas versiones.

• Pone a su alcance la gestión de enlaces
entre textos relacionados a su obra,
fragmentos, notas, comentarios,
borradores, bosquejos, referencias, etc.

• En Xanadú se planteaba un solo
documento global que contenga todo
lo escrito en el mundo. Un docuverso.

https://dl.acm.org/doi/pdf/10.1145/800197.806036
https://www.zator.com/Internet/X_Ap_H.htm

Hipermedia
• Además de texto se pueden mostrar otros formatos digitales como imágenes,

audio y video.

• Se pueden presentar diferentes fragmentos de información al usuario.

• Podemos recorrer múltiples recursos siguiendo las hiperligas, a esto le
llamamos navegar.

World Wide Web
Tim Berners Lee - Robert Cailliau 1990

• Robert Cailliau desarrolló el primer
sistema hipertexto para el CERN en
1987.

• Tim Berners-Lee creo el sistema
hipertexto para acceder a los múltiples
documentos relacionados con el
CERN.

• La WWW obtuvo el premio ACM
Software System Award en 1995

Componentes de la World Wide Web

Internet
TCP/IP

Servidor HTTP
WorldWideWeb

Navegador

• Primer versión del protocolo HTTP

• Formato HTML

• Sintáxis de URL

• Se esperaba que funcionara con
distintos tipos de archivo.

• Descentralizado

• Los archivos son mutables

• Hiperlinks de Ted Nelson

• Protocolo liberado por CERN en1993

HTML
HTML

HTTP Request
 GET /index.html

https://www.w3.org/Protocols/HTTP/AsImplemented.html

HTTP Response

HTTP
Recursos

• Archivos Estáticos:

Texto, pdf, Word, jpeg, avi,
html, css.

• Recursos dinámicos

Cámara web, intercambio de
valores, compras en línea.

Gateway, APIs.

https://dl.acm.org/doi/pdf/10.1145/800197.806036

HTTP
MIME
• text/html

• text/javascript

• image/jpeg

• application/json

URI/URL

• https://developer.mozilla.org

• https://developer.mozilla.org/en-US/docs/Learn/

• https://developer.mozilla.org/en-US/search?q=URL

• http://www.example.com:80/path/to/myfile.html?key1=value1&key2=value2#SomewhereInTheDocument
Protocolo

file, ftp, ssh, urn, mailto, ws
Dominio Puerto Ruta Query String Ancla

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types

HTTP
Transacción HTTP

HTTP
Request-Response

HTTP
Métodos más
utilizados

Método Descripción Cuerpo

GET Regresa el recurso solicitado (una representación), este método no hace
modificaciones. NO

PUT Reemplaza las representaciones actuales del recurso solicitado. Con el
payload del request. SI

POST Envía una entidad al recurso especificado, en muchos casos cambia el
estado y puede causar efectos secundarios en el servidor. SI

DELETE Borra el recurso especificado. NO

Código Descripción

200 OK

302 Redirección, ve a otro lugar por el recurso.

404 No se encontró.

DELETE Borra el recurso especificado.

Métodos más
utilizados

HTTP

Aplicaciones Web
De Hipermedia a Single Page Applications

• Los navegadores evolucionaron añadiendo distintas capacidades para ejecutar
código en ellos. Applets, ActionScript, Flash, JavaScript.

• Tenemos ahora thick clients. Buena parte de la aplicación se implementa en el
cliente utilizando JavaScript, haciendo solo llamadas asíncronas a los servidores
web intercambiando datos JSON.

• No es necesario navegar entre recursos. Esto contrasta con los sistemas
hípermedia.

• Se utilizan APIs REST (basados en HTTP) para utilizar servicios internos y
externos.

• Se despliegan las aplicaciones utilizando servicios cloud.

Arquitectura de
las aplicaciones Web

Arquitectura de Aplicaciones Web

Intefaz de Usuario

Logica de Negocio

Acceso a Datos

Arquitectura multi capas

Arquitectura de Aplicaciones Web
Arquitectura limpia

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Al seguir una arquitectura limpia se busca:
• Independencia de Frameworks. La arquitectura no depende del uso de un

framework o librería en particular.

• La posibilidad de realizar pruebas a las Reglas de Negocio sin la necesidad
de tener una UI, Base de Datos, Servidor Web, u otros elementos externos.

• Independiente del UI. La UI puede cambiar fácilmente, sin la necesidad de
cambiar el resto del sistema. Por ejemplo, se podría cambiar la interfaz de
web a la terminal sin cambiar las reglas de negocio.

• Independiente de la Base de Datos. Se debería poder cambiar de Oracle a
SQLServer, a MongoDB o redis o cualquier otra tecnología.

• Independientes de sistemas externos. Las reglas de negocio no dependen del
mundo externo.

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Estilo arquitectónico basado en eventos
Procesamento distribuido escalabre

https://learn.microsoft.com/es-es/azure/architecture/guide/architecture-styles/event-driven

Estilo arquitectónico basado en microservicios
Procesamento distribuido escalabre

Estilo arquitectónico web queue worker
Procesamento distribuido escalabre

https://learn.microsoft.com/es-es/azure/architecture/guide/architecture-styles/web-queue-worker

Tecnologías para el desarrollo de
aplicaciones Web

Librerías para consumir HTTP

• En la mayoría de lenguajes se tienen librerías para implementar servidores
HTTP básicos, que no deben usarse en producción, pero son buenos para
aprender o proyectos sencillos.

• En Python se cuenta con la librería estándar http.server. La clase
HTTPServer crea y escucha por el socket HTTP, enviando las peticiones a
un handler:

def run(server_class=HTTPServer, handler_class=BaseHTTPRequestHandler):
 server_address = ('', 8000)
 httpd = server_class(server_address, handler_class)
 httpd.serve_forever()

Librerías estándar para consumir HTTP
• También se tienen librerías para procesar algunos elementos de HTTP

• http

• cookies

• HTTP status codes

• HTTP method

• http.client

• urllib con módulos para trabajar con URLs

• response

• parse

• xmlrpc

Librerías especializadas

• La librería cubre con todas las necesidades para enviar peticiones HTTP/1.1
fácilmente

• Incluye añadir query strings, datos del cuerpo en una petición con POST, Keep-alive.

• Utiliza internamente urllib3.

https://github.com/urllib3/urllib3 https://requests.readthedocs.io/en/latest/#

Requests: HTTP for Humans™

Librerías especializadas

• La librería cubre con todas las necesidades para extraer datos de
documentos HTML y XML.

Beautiful Soup

Librerías
especializadas

• La librería cubre con todas las
necesidades para extraer datos
de documentos HTML y XML.

Beautiful Soup

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Web Frameworks Server-Side
Componentes principales

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction

URL Mapping y Middleware
Request

HTTP
RUTAS

URLs -> Métodos

Método

Response
HTTP

Plantilla

ORM

DBMS

Middleware

Middleware

Web Frameworks Server-Side
Procesador de Plantillas

https://www.indusface.com/learning/server-side-template-injectionssti/

ORM Object Relational Mapping
Orientado a Objetos

ana = new Persona(‘Ana’, ‘ana@gmail.com')

solovino = new Mascota(‘Solovino’, ana)

print(solovino.dueño.nombre) // ‘Ana'

SELECT p.nombre

FROM Persona p

JOIN Mascota m ON m.dueño = p.id

WHERE m.id = 4;

Object Relational Mapping

Relacional

mailto:ana@gmail.com

Frameworks lado del Servidor

Web
• Django

• Flask

• CherryPy

• Masonite

• FastAPI

• web2py

• TurboGears

• aiohttp

• Genshi

• Jinja

• Mako

• Django templates

• Jinja2

• SQLAlchemy

• Django ORM

• SQLObject

• Peewee

• Masonite ORM

Plantillas ORM

Python

Frameworks lado del Servidor

Web
• Ruby on Rails (Ruby)

• ASP.NET (.NET)

• Vapor (Swift)

• Next.js (JS)

• Deno (JS)

• Laravel (PHP)

• Mojolicious (Perl)

• Phoenix (Elixir)

• Spring Boot (Java)

• Linters

• Sistemas de Control de Versiones

• Empaquetadores

• Contenedores

• Orquestadores

• Frameworks de Pruebas

• Automatización (Build Automation)

• Herramientas para despliegue (CD)

• Bitácoras

Otras Herramientas

Otros Lenguajes

http://ASP.NET

Frameworks del lado del Cliente

Async
Request

HTTP

Response
HTTP

HTML

CSS

JavaScript

Async
Response

HTTP HTML

JSON

Compiladores
Babel

Typescript

Compiladores
PostCSS

SASS
Framework

Framework
CSS

Actualizar el
HTML

Original

Actualizar el DOM (HTML) con JSON
Ejemplo en Vanilla JavaScript

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

const state = [

 {

 id: "todo-0",

 name: "Learn some frameworks!",

 },

];

function buildTodoItemEl(id, name) {
 const item = document.createElement("li");
 const span = document.createElement("span");
 const textContent = document.createTextNode(name);

 span.appendChild(textContent);

 item.id = id;
 item.appendChild(span);
 item.appendChild(buildDeleteButtonEl(id));

 return item;
}

function renderTodoList() {
 const frag = document.createDocumentFragment();
 state.tasks.forEach((task) => {
 const item = buildTodoItemEl(task.id, task.name);
 frag.appendChild(item);
 });

 while (todoListEl.firstChild) {
 todoListEl.removeChild(todoListEl.firstChild);
 }
 todoListEl.appendChild(frag);
}

 <li id=“todo-0">
 "Learn some frameworks!"
 <button type="button">Delete</button>

 …

Actualizar el DOM (HTML) con JSON
Ejemplo en Vue

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

 <li v-for="task in tasks" v-bind:key="task.id">
 {{task.name}}
 <button type="button">Delete</button>

 Framework

Frameworks del lado del Cliente

Async
Request

HTTP

Response
HTTP

HTML

CSS

Async
Response

HTTP
JSON

Actualizar el
HTML

Página 1

Actualizar el
HTML

Página 2

Actualizar el
HTML

Página 3

Rutas

Componentes

Componentes

Componentes

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

Framework Browser support Preferred DSL Supported DSLs Citation

Angular Modern TypeScript HTML-based; TypeScript official docs

React Modern JSX JSX; TypeScript official docs

Vue Modern (IE9+ in Vue 2) HTML-based HTML-based, JSX, Pug official docs

Ember Modern (IE9+ in Ember version
2.18) Handlebars Handlebars, TypeScript official docs

Frameworks del lado del Cliente

https://angular.io/guide/browser-support
https://reactjs.org/docs/react-dom.html#browser-support
https://cli.vuejs.org/guide/browser-compatibility.html
https://guides.emberjs.com/v3.3.0/templates/handlebars-basics/

Planificación de aplicaciones
Web

Manifiesto Ágil
Estamos descubriendo formas mejores de desarrollar software
tanto por nuestra propia experiencia como ayudando a terceros.
A través de este trabajo hemos aprendido a valorar:

• Individuos e interacciones sobre procesos y herramientas
• Software funcionando sobre documentación exahustiva
• Colaboración con el cliente sobre negociación contractual
• Respuesta ante el cambio sobre seguir un plan

Esto es, aunque valoramos los elementos de la derecha,
valoramos más los de la izquierda.

firmado por Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C.
Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland y Dave Thomas,1

https://es.wikipedia.org/wiki/Kent_Beck
https://es.wikipedia.org/wiki/Mike_Beedle
https://es.wikipedia.org/w/index.php?title=Arie_Van_Bennekum&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Alistair_Cockburn&action=edit&redlink=1
https://es.wikipedia.org/wiki/Ward_Cunningham
https://es.wikipedia.org/wiki/Martin_Fowler
https://es.wikipedia.org/wiki/Martin_Fowler
https://es.wikipedia.org/w/index.php?title=James_Grenning&action=edit&redlink=1
https://es.wikipedia.org/wiki/Jim_Highsmith
https://es.wikipedia.org/w/index.php?title=Andrew_Hunt&action=edit&redlink=1
https://es.wikipedia.org/wiki/Ron_Jeffries
https://es.wikipedia.org/w/index.php?title=Jon_Kern&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Brian_Marick&action=edit&redlink=1
https://es.wikipedia.org/wiki/Robert_C._Martin
https://es.wikipedia.org/wiki/Robert_C._Martin
https://es.wikipedia.org/w/index.php?title=Steve_Mellor&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Ken_Schwaber&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Jeff_Sutherland&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Dave_Thomas_(programmer)&action=edit&redlink=1
https://es.wikipedia.org/wiki/Manifiesto_%C3%A1gil#cite_note-1

El equipo ágil

https://www.altexsoft.com/blog/cross-functional-teams/

• Multidisciplinario

• Dedicados al equipo

• Esfuerzo colaborativo

• Con tiempo trabajando
juntos

Características

El equipo ágil

https://www.altexsoft.com/blog/cross-functional-teams/

• El trabajo se asigna al equipo, no a individuos.

• El equipo divide el trabajo en tareas y decide a que miembro asigna cada tarea.

• Esto puede cambiar la manera en que se evalúa el desempeño individual.

• El equipo decide sus propios procesos. La administración puede establecer restricciones a
los procesos, pero de manera justificada.

• Los equipos deciden sus procesos de:

• Desarrollo

• Construcción (Build Automation)

• Prueba

• Liberación

Desde la organización

Desarrollo Ágil

