Introduccion a las Aplicaciones
Web

J.M. Garcia

amazon N
N1

@ Actuallzar ublcaclén

IV Shows Movies Recemy Aoded

— Todo VueltaaClases PrepdrateparalaUni Clinica MdsVendidos Amazon Basics Servicio al Cliente Musica Nuevos lanzamientos Prime ~ Ofertas del Dia Librd

Para la Universidad

Award-Winning TV Shows

- X <
N

' Ofertas Electronicos Favoritos Habitacion Cocina M
. ‘-ﬁ : ’
; S \‘\ >y
: " , | (F i Hasta 45% en esenciales
I : - : : de tech universitaria

Critically Acclaimed TV Dramas

< !
Trending Now ‘

Compra ahora »

Prime Student: prueba gratis de 6 meses

Buscar Buscar tus Pines

Todo Recetas Decoracion i Andrea

487 seguidores . Siguiendo a 224

Tableros Pines Probados Segui

BLAC ,&JRROR
BANDERSNATIH
Top Picks for bm25

N
0
e
1
nm=
1
==

-

~mmia

Evolucion de
las aplicaciones Web

As We May Think (Como podriamos pensar)

Vennvar Bush (Julio/Septiembre de 1945)

 Articulo de 10 paginas

» ;COmo podemos acceder mas facilmente al / .
conocimiento? ;

(&)

b
_.)#7 ;

« Memex (Memory Extender):

* Recupera Microfiims y los despliega en multiples
pantallas.

* Se pueden establecer secuencias asociativas entre
los films, se registran los documentos visitados.

* Se pueden escribir anotaciones en ellos.

Proyecto Xanadu

Es el primer proyecto de hipertexto fundado en 1960 por Ted Nelson.

 Un documento puede tener
hipervinculos a otros textos y sus

distintas versiones.

e Pone a su alcance la gestion de enlaces
entre textos relacionados a su obra,
fragmentos, notas, comentarios,
borradores, bosquejos, referencias, etc.

* En Xanadu se planteaba un solo
documento global que contenga todo
lo escrito en el mundo. Un docuverso.

https://dl.acm.org/doi/pdf/10.1145/800197.806036

Sub-Qutline

Summary

———————— ——

\\§

Variant
Subdrafts

\

\—#-—1

-~ Commentaries

\

I N \\Sources‘l

FIGURE 3—All levels of documentation in the ELF.

https://dl.acm.org/doi/pdf/10.1145/800197.806036
https://www.zator.com/Internet/X_Ap_H.htm

Hipermedia

« Ademas de texto se pueden mostrar otros formatos digitales como imagenes,
audio y video.

e Se pueden presentar diferentes fragmentos de informacion al usuario.

 Podemos recorrer multiples recursos siguiendo las hiperligas, a esto le
llamamos navegar.

World Wide Web

Tim Berners Lee - Robert Cailliau 1990 e

e Robert Cailliau desarrollo el primer
sistema hipertexto para el CERN en

1987.

ATVZOWETRIINETE. oENzw™

e Tim Berners-Lee creo el sistema
hipertexto para acceder a los multiples
documentos relacionados con el

CERN.

s CEMPIOC
rrm e A e

PROIRIETE CERN

« La WWW obtuvo el premio ACM - [
Software System Award en 1995 e

7

2
®
3
)

5

‘
2

Componentes de la World Wide Web

* Primer version del protocolo HTTP ¢ Descentralizado
 Formato HTML e | os archivos son mutables
e Sintaxis de URL e Hiperlinks de Ted Nelson

* Se esperaba que funcionara con * Protocolo liberado por CERN en1993
distintos tipos de archivo.

The Wor is a wi ation retrieval initiative aiming e universe of documents.
E i ine about W3 is r indirectly to this document, including the project, Mailing lists , Policy ,
November's W3 news , Frequently Asked Questions .
What's out there?
Pointers to the world's online information, subjects , W3 servers, etc.
the browser you are using
oducts
‘W3 project components and their current state. (e.g. Line Mode ,X11 Viola , NeXTStep , Servers , Tools , Mail robot , Library) ™~
n I t
protocols, formats, program internals etc G E / I n d e X h m I

HTTP Response

https://www.w3.org/Protocols/HTTP/Asimplemented.html Internet

TCP/IP

HITP

Recursos

 Archivos Estaticos:

Texto, pdf, Word, jpeg, avi,

html, css. g e

e Recursos dinamicos Clent Serer

Camara web, intercambio de

valores, compras en linea. .
‘—’~< >$1'c-m'o'm$
Jateway, AFS S .

https://dl.acm.org/doi/pdf/10.1145/800197.806036

HITP

MIME
EContent-ty e: image/j egf

® teXt/htmI : Content- ngh: 12984 E
 text/javascript PR -y |
* image/jpeg

* application/json

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of HTTP/MIME_types/Common_types

URI/URL

Server

* https://developer.mozilla.org
e https://developer.mozilla.org/en-US/docs/Learn/
e https://developer.mozilla.org/en-US/search?g=URL

e http://www.example.com:80/path/to/myfile.ntm|?key1=value1&key2=value2#SomewherelnTheDocument

Protocolo Dominio Puerto Ruta Query String Ancla
file, ftp, ssh, urn, mailto, ws

HITP

Transaccion HTTP

HTTP request message contains
the command and the URI

m»

Client | ’“HH L

GET /specials/saw-blade.gif HTTP/1.0

Host:

www. joes-hardware.com

Internet

HTTP/1.0 200 OK
Content-type: image/gif
Content-length: 8572

y

www.joes-hardware.com

" HTTP response message contains
the result of the transaction

HITP

Request-Response

Request start line (ommand) - GET _/tools.html P/1.0

Request headers » Accept: text/html, image/gif, image/jpeg

Accept-language: en %
I

No request body—

(a) Request message

User-agent: Mozilla/4.75 [en] (Win98; U)
Host: www.joes-hardware.com

(lient "llllllllwmme message

Response start line—+HTTP/1.0 200 OK

(status)

Date: Sun, o1 Oct 2000 23:25:17 GMT
Server: Apache/1.3.11 BSafe-SSL/1.38 (Unix

Response headers—+Last-modified: Tue, 04 Jul 2000 09:46:21 GMT

Content-length: 403
Content-type: text/html

<HTML>

<HEAD><TITLE>Joe’s Tools</TITLE></HEAD>
<BODY>

<H1>Tools Page</H1>

<H2>Hammexrs</H2>

<P>Joe’s Hardware Online has the largest selection of
hammers on the earth.</P>

Response body—+<H2>Drills</H2>

<P>Joe’s Hardware has a complete line of cordless

and corded drills, as well as the latest in
plutonium-powered atomic drills, for those big

around the house jobs./<P>...
</BODY>
</HTML>

www.joes-hardware.com

HTTP

Métodos mas
utilizados

HTTP

Métodos mas
utilizados

Méetodo Descripcion Cuerpo
Regresa el recurso solicitado (una representacion), este método no hace
GET e NO
modificaciones.
Reemplaza las representaciones actuales del recurso solicitado. Con el
PUT Sl
payload del request.
Envia una entidad al recurso especificado, en muchos casos cambia el
POST . . S|
estado y puede causar efectos secundarios en el servidor.
DELETE |Borra el recurso especificado. NO
Caodigo Descripcion
200 OK
302 Redireccion, ve a otro lugar por el recurso.
404 No se encontro.
DELETE Borra el recurso especificado.

Aplicaciones Web
De Hipermedia a Single Page Applications

* |Los navegadores evolucionaron anadiendo distintas capacidades para ejecutar
codigo en ellos. Applets, ActionScript, Flash, JavaScript.

* Tenemos ahora thick clients. Buena parte de la aplicacion se implementa en el
cliente utilizando JavaScript, haciendo solo llamadas asincronas a los servidores
web intercambiando datos JSON.

 NO es necesario navegar entre recursos. Esto contrasta con los sistemas
hipermedia.

o Se utilizan APIs REST (basados en HTTP) para utilizar servicios internos y
externos.

e Se despliegan las aplicaciones utilizando servicios cloud.

Arquitectura de
las aplicaciones Web

Arquitectura de Aplicaciones Web

Arquitectura multi capas

Intefaz de Usuario

Logica de Negocio

Acceso a Datos

Arquitectura de Aplicaciones Web

Arquitectura limpia

\ :
. Reglas del Negocio

('\) Reglas de la Aplicacién
L \) Adaptadores de Interfaz

| ('\) Frameworks y Drivers

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Al seguir una arquitectura limpia se busca:

* |Independencia de Frameworks. La arquitectura no depende del uso de un
framework o libreria en particular.

* | a posibilidad de realizar pruebas a las Reglas de Negocio sin la necesidad
de tener una Ul, Base de Datos, Servidor Web, u otros elementos externos.

* Independiente del Ul. La Ul puede cambiar facilmente, sin la necesidad de
cambiar el resto del sistema. Por ejemplo, se podria cambiar la interfaz de
web a la terminal sin cambiar las reglas de negocio.

* Independiente de |la Base de Datos. Se deberia poder cambiar de Oracle a
SQLServer, a MongoDB o redis o cualquier otra tecnologia.

* |Independientes de sistemas externos. Las reglas de negocio no dependen del
mundo externo.

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Estilo arquitectonico basado en eventos

Procesamento distribuido escalabre

WORKERS
CONSUMIDORES DE MENSAJES

PRODUCTORES COLAS DE MENSAJES
DE MENSAJES

— = oric1 I [
— = —

v IR =
— BUCHEETCEE —— B -..... \ @

https://learn.microsoft.com/es-es/azure/architecture/guide/architecture-styles/event-driven

Estilo arquitectonico basado en microservicios
Procesamento distribuido egcalabre |

. w Funcién Lambda [
Puerta de . Servic
Enlace o ervicio
(Gateway) :

Funcion Lambda

Microservicios

Estilo arquitectonico web queue worker

Procesamento distribuido escalabre

Servicios
Externos

Proveedor
o[4
|dentidad

Front End % -) Pi—
Web
Cache

N Colade oy Workers |
Mensajes
Contenido
Estatico

Base de
Datos

https://learn.microsoft.com/es-es/azure/architecture/guide/architecture-styles/web-queue-worker

Tecnologias para el desarrollo de
aplicaciones Web

Librerias para consumir HTTP

* En la mayoria de lenguajes se tienen librerias para implementar servidores
HTTP basicos, que no deben usarse en produccion, pero son buenos para
aprender o proyectos sencillos.

* En Python se cuenta con la libreria estandar http.server. La clase
HTTPServer crea y escucha por el socket HT TP, enviando las peticiones a

un handler:

def run(server class=HTTPServer, handler class=BaseHTTPRequestHandler):
server address = ('', 8000)
httpd = server class(server address, handler class)
httpd.serve forever()

Librerias estandar para consumir HTTP

e También se tienen librerias para procesar algunos elementos de HTTP

e http
e cookies
e HTTP status codes
e« HTTP method
e http.client

 urllib con modulos para trabajar con URLs
¢ response
e parse

e Xmlrpc

Librerias especializadas

Requests: HTTP for Humans™

>>> r = requests.get('https://api.github.com/user’', auth=('user', 'pass'))
>>> r.status_code

200

>>> r.headers|['content-type']

‘application/json; charset=utf8’

>>> r.encoding

'utf-8"

>>> r.text

'{"type":"User"...'

>>> r.json()

{'private _gists': 419, 'total _private repos': 77, ...}

* La libreria cubre con todas las necesidades para enviar peticiones HTTP/1.1
facilmente

* |ncluye anadir query strings, datos del cuerpo en una peticidon con POST, Keep-alive.
e Utiliza internamente urllib3.

https://github.com/urllib3/urllib3 https://requests.readthedocs.io/en/latest/#

Librerias especializadas
Beautiful Soup

* La libreria cubre con todas las necesidades para extraer datos de
documentos HTML y XML.

html_doc = """<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title'">The Dormouse's story</p>

<p class="story'">0Once upon a time there were three little sisters; and their names were
Elsie,

Lacie and

Tillie;

and they lived at the bottom of a well.</p>

<p class="story'">...</p>

Librerias
especializadas

Beautiful Soup

e La libreria cubre con todas las
necesidades para extraer datos
de documentos HTML y XML.

for link in soup.find_all('a'):
print(link.get('href'))

http://example.com/elsie

http://example.com/lacie

http://example.com/tillie

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

html_doc = """<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title">The Dormouse's story</p>

<p class="story">0Once upon a time there were three little sisters; and their names were
Elsie,

Lacie and

Tillie;

and they lived at the bottom of a well.</p>

<p class="story">...</p>

from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser')

soup.title
<title>The Dormouse's story</title>

soup.title.name
u'title'

soup.title.string
u'The Dormouse's story'

soup.title.parent.name
u'head'’

soup.p
<p class="title">The Dormouse's story</p>

soup.pl'class’']
u'title’

soup.a
Elsie

soup.find_all('a')

[Elsie,

Laclie,

Tillie]

soup.find(id="1ink3")
Tillie

Web Frameworks Server-Side

Componentes principales

Server-side

O

Web Server

O,

Client-side

HTTP GET Request

I

&

Static resources:
Files « CSS
« Javascript
\ \/ Images
« other files
r Request data:
« URL encoding
« GET/POST data
HTML « Cookies
Templates Y
> L,
Web HTML
Database Data Application @
—®

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction

HTTP Response

Browser

HTML
CSS
JavaScript

URL Mapping y Middleware

Request RUTAS Response
HTTP URLs -> Métodos HTTP

—

Web Frameworks Server-Side

Procesador de Plantillas

<htmI>

;i.ello S{name}

</htmi> ‘ <html>

Template File ®) i—lnello Fred!
27htm|>

.(;ata.name = Output

“Fred”;

TEMPLATE ENGINE

Java Object

https://www.indusface.com/learning/server-side-template-injectionssti/

ORM Object Relational Mapping

Orientado a Objetos

Mascota 1 : Persona
+ nombre:string + nombre:string ana = new Persona(‘Ana’, ‘ana@gmail.com’)
+ duefio:Persona 0.1 | + email:string , ‘ . :
o solovino = new Mascota(‘Solovino’, ana)
+__ str__():string +__ str__():string print(solovino.dueﬁo.nombre) // ‘Ana’

Mascota Persona

id \ nombre \ duefio i id nombre email SELECT p.nombre

1 Fiff 1 1 Ana |ana@gmail.com FROM Persona p

2 Firulais 1 ‘ 2 Tom Itom@gmail.com JOIN Mascota m ON m.dueno = p.id
I 4 I Solovino ‘ <null> ‘ WHERE m.id = 4;

Relacional

mailto:ana@gmail.com

Frameworks lado del Servidor

Python
Web Plantillas ORM
* Django e Genshi SQLAIchemy
* Flask e Jinja Django ORM
* CherryPy Mako o SQLODbject
 Masonite * Django templates Peewee
* FastAP] e Jinjaz Masonite ORM
e web2py

e TurboGears
e aiohttp

Frameworks lado del Servidor

Otros Lenguajes

Web Otras Herramientas

» Ruby on Rails (Ruby) * Linters

» ASP.NET (.NET) Sistemas de Control de Versiones
o Vapor (Swift) » Empaquetadores

e Next.js (JS) Contenedores

e Deno (JS) * Orquestadores

* Laravel (PHP) » Frameworks de Pruebas

* Mojolicious (Perl) Automatizacién (Build Automation)
* Phoenix (Elixir) » Herramientas para despliegue (CD)

Spring Boot (Java) e Bitacoras

http://ASP.NET

Frameworks del lado del Cliente

Framework
Response i
HTTP '
Compiladores
PostCSS Framework
SYAGES)
Async Compiladores
Request e JavaScript Babel
HTTP Typescript
JSON
R ;Sg::se — - —— Actualizar el

HTML
ATTP HTML Original

Actualizar el DOM (HTML) con JSON

Ejemplo en Vanilla JavaScript

- <li id="todo-0">
const state = | ;
{ | "Learn some frameworks!"
id: "todo-0", <button type="button">Delete</button>
name: "Learn some frameworks!", </1li>
}
I

function buildTodoItemEl(1d, name) { function rendfrTodoLlst() {
const item = document.createElement("1i"); const frag = document.createDocumentFragment();
const span = document.createElement('"span"); state.ta§ks.forEa?h((task) => A |
const textContent = document.createTextNode(name); const item = buildTodoltemEl(task.1d, task.name);
frag.appendChild(item);
span.appendChild(textContent); 1)
item.id = id; while (todoListEl.firstChild) {
item.appendChild(span); todoListEl.removeChild(todoListEl.firstChild);
item.appendChild(buildDeleteButtonEl (id)); }
todoListEl.appendChild(fraqg);
return item; }

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

Actualizar el DOM (HTML) con JSON

Ejemplo en Vue

<li v-for="task 1n tasks" v-bind:key="task.id">
{{task.name}}
<button type="button'">Delete</button>
</1li>

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

Frameworks del lado del Cliente

Actualizar el
HTML
Pagina 1

Response
HTTP

Framework Actualizar el
HTML
Pagina 2
Async
Request i
HTTP
Async Actualizar el
Response = = JSON HTML
HTTP Pagina 3

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

Frameworks del lado del Cliente

Framework Browser support Preferred DSL Supported DSLs Citation
Angular Modern ypeScript HTML-based; TypeScript | official docs
React Modern JSX JSX; TypeScript official docs
Vue Modern (IE9+ in Vue 2) HTML-based HTML-based, JSX, Pug | official docs
Ember Modern (IE9—|—2.i?8I§mber version Handlebars Handlebars, TypeScript | official docs

https://angular.io/guide/browser-support
https://reactjs.org/docs/react-dom.html#browser-support
https://cli.vuejs.org/guide/browser-compatibility.html
https://guides.emberjs.com/v3.3.0/templates/handlebars-basics/

Planificacion de aplicaciones
Web

Manifiesto Agil

Estamos descubriendo formas mejores de desarrollar software
tanto por nuestra propia experiencia como ayudando a terceros.
A traves de este trabajo hemos aprendido a valorar:

* Individuos e interacciones sobre procesos y herramientas
- Software funcionando sobre documentacion exahustiva

- Colaboracion con el cliente sobre negociacion contractual
- Respuesta ante el cambio sobre seguir un plan

Esto es, aunque valoramos los elementos de |la derecha,
valoramos mas los de la izquierda.

firmado por Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C.
Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland y Dave Thomas,’

https://es.wikipedia.org/wiki/Kent_Beck
https://es.wikipedia.org/wiki/Mike_Beedle
https://es.wikipedia.org/w/index.php?title=Arie_Van_Bennekum&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Alistair_Cockburn&action=edit&redlink=1
https://es.wikipedia.org/wiki/Ward_Cunningham
https://es.wikipedia.org/wiki/Martin_Fowler
https://es.wikipedia.org/wiki/Martin_Fowler
https://es.wikipedia.org/w/index.php?title=James_Grenning&action=edit&redlink=1
https://es.wikipedia.org/wiki/Jim_Highsmith
https://es.wikipedia.org/w/index.php?title=Andrew_Hunt&action=edit&redlink=1
https://es.wikipedia.org/wiki/Ron_Jeffries
https://es.wikipedia.org/w/index.php?title=Jon_Kern&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Brian_Marick&action=edit&redlink=1
https://es.wikipedia.org/wiki/Robert_C._Martin
https://es.wikipedia.org/wiki/Robert_C._Martin
https://es.wikipedia.org/w/index.php?title=Steve_Mellor&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Ken_Schwaber&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Jeff_Sutherland&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Dave_Thomas_(programmer)&action=edit&redlink=1
https://es.wikipedia.org/wiki/Manifiesto_%C3%A1gil#cite_note-1

El equipo agil

Caracteristicas

* Multidisciplinario
 Dedicados al equipo
e Esfuerzo colaborativo

* Con tiempo trabajando
juntos

https://www.altexsoft.com/blog/cross-functional-teams/

TRADITIONAL TEAM & CROSS-FUNCTIONAL TEAM

Traditional team Cross-functional team
@ O ® O ® O
ah & 4 & &h &
O O @
_— _— - ®© 0 O
Team 1 Team 2 Team 3 .’-‘.
(e.g. UI/UX (e.g. Development) (e.g. Marketing)
design) & &
Individuals from different departments
® O ® O work as one team
&h & &h &

Team 4 Team 5
(e.g. QA) (e.g. Product management)

O altexsoft

El equipo agil

Desde la organizacion

* El trabajo se asigna al equipo, no a individuos.
* El equipo divide el trabajo en tareas y decide a que miembro asigna cada tarea.
* Esto puede cambiar la manera en que se evalua el desempenio individual.

* El equipo decide sus propios procesos. La administracion puede establecer restricciones a
los procesos, pero de manera justificada.

* Los equipos deciden sus procesos de:
* Desarrollo
e Construccion (Build Automation)
* Prueba
* Liberacion

https://www.altexsoft.com/blog/cross-functional-teams/

Desarrollo Agil

[teration 32 Done Donel!l
o Customer veviews/ fine—tuning
Tasks e End-to-end sani{:\/ check
. o Build script
= @ Deploy seript
o Final customer approval

Dot foraedl
Microbrew—Ffest
this friday @3:00

The Art of

Agile

Development 27
SVeloPMIEREEEE

O'REILLY"

\

% ©=
/THEORY/IN/PRACTICE ojho(/

7,

~ [

James Shore

with Diana Larsen,
Gitte Klitgaard,

& Shane Warden

Foreword by Martin Fowler

