
Introducción rápida a Python
Mario García-Valdez

¿Python?
•Es un lenguaje dinámico e
interpretado.
•De código libre.
•Amigable para principiantes.
•Disponible en:
 http://www.python.org

http://brainstomping.files.wordpress.com/2011/12/nick_furia_what_the.jpg http://upload.wikimedia.org/wikipedia/en/c/c3/Python_add5_syntax.png

http://www.python.com
http://brainstomping.files.wordpress.com/2011/12/nick_furia_what_the.jpg
http://upload.wikimedia.org/wikipedia/en/c/c3/Python_add5_syntax.png

http://blogs-images.forbes.com/davidewalt/files/2011/03/monty-python-1020x1024.jpg

•Desarrollado por Guido van Rossum a
principio de los noventas.
•El nombre es por el grupo de cómicos ingleses
Monty Python.

http://blogs-images.forbes.com/davidewalt/files/2011/03/monty-python-1020x1024.jpg

Ejemplo Básico

x = 34 - 23 # Comentario
y = “Hola” # Otro
z = 3.45
if z == 3.45 or y == “Hola”:
 x = x + 1
 y = y + “ Mundo” # Concatenación de cadenas

print(x)
print(y)

Entendiendo el código

La indentación es parte del lenguaje

Los tipos de las “variables” no se tienen que declarar

La asignación usa = y se compara con ==

Los símbolos + - * / % funcionan como siempre
Se concatena con + .
Se usa de forma especial % para derle formato a las cadenas (como el

printf de C)

Los operadores lógicos son palabras (and, or, not)  

La función para imprimir en pantalla es print().

Tipos Básicos
Enteros

z = 5 // 2
El resultado es 2, división entera.

Flotantes
x = 3.456

Cadenas
Se puede usar “ ” o ‘ ’ para indicarlas.  

“abc” ‘abc’ (Son lo mismo.)
En caso de conflicto se usan ambas.  

“matt’s”
Se usan comillas triples para múltiples párrafos o para incluir comillas y

apóstrofes:  
“““a‘b“c”””

Espacio en Blanco
El espacio en blanco tiene significado en Python:

• En especial la indentación y los saltos de línea.
• Utiliza un salto de línea para terminar una línea de código.
• Se utiliza un \ para que el salto de línea no se considere.

No se usan llaves { } para marcar los bloques.
Se utiliza indentación consistente para esto.

• El primer renglón con más indentación inicia el bloque.
• El primer renglón con menos indentación termina el bloque.

if z == 3.45 or y == “Hello”:
 x = x + 1
 y = y + “ World” # String concat.
print x
print y

Comentarios
 Inician con # el resto de la línea se ignora.

 Puede incluirse una “cadena de documentación” en la
primera línea de una función o clase.

 Esta documentación se usa por el ambiente de desarrollo,
depuradores y otras herramientas.

 Se considera de buen gusto incluir esta documentación.

def mi_funccion(x, y):
 “““El docstring. Esta función  

es bien importante ya que blah blah blah.””” 
Comentario aqui...

Asignación - Atado

 El atado (binding) de una variable significa que se
asigna a un nombre (una referencia) a cierto objeto
La asignación crea referencias, no copias.

 Los nombres en Python no tienen un tipo propio.
Los objetos si.
 Python determina el tipo de la referencia de forma automática,

dependiendo del tipo de objeto que se asigne.
 Creas el nombre la primera vez que aparece a la

izquierda de una expresión.

¿tipo? no ¿tipo? int

x = 3

Asignación - Atado

 Si tratas de utilizar un nombre antes de que sea creado, saldrá
un error:

>>> x = 3
3
>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

Nombres válidos
Python distingue entre minúsculas y mayúsculas.

Los nombres no pueden empezar con número.

Pueden contener letras, números y subguiones (_).
 bob Bob _bob _2_bob_ bob_2 BoB

Palabras reservadas:
 and, assert, break, class, continue, def, del, elif,

else, except, exec, finally, for, from, global, if,
import, in, is, lambda, not, or, pass, print, raise,
return, try, while

Modo Interactivo

>>> iva = 12.5 / 100
>>> precio = 100.50
>>> precio * iva
12.5625
>>> precio + _
113.0625
>>> round(_, 2)
113.06
>>>

En modo interactivo, la última expresión impresa se asigna a
la variable _ .

Esto significa que, cuando se usa Python como calculadora,
se facilita continuar los cálculos, por ejemplo:

Funciones en Python

http://images4.alphacoders.com/771/77116.jpg

http://images4.alphacoders.com/771/77116.jpg

CIS 391 Introduction to Artificial Intelligence Fall 2008 (Slides)

Como definir funciones

def get_optimo(filename, path):
 “Cadena de Documentación” 
 linea1

 linea2

Empiezan con def

No se indica tipo que regresa, ni tipo de argumentos

Nombre de la función Argumentos

Dos puntos

Este nivel de indentación está
dentro del bloque de la funcion

La función termina al encontrarse otra línea
con nivel de indentación menor o fin de archivo

return mejor
Regresa el control al código
que llamó la función

CIS 391 Introduction to Artificial Intelligence Fall 2008 (Slides)

Llamando a las funciones
La sintaxis para llamar una función es:

 >>> def producto(x, y):
 return x * y

 >>> producto(3, 4)
 12

Los parámetros en Python se llaman “Call By-Sharing”

Los parámetros son referencias a las variables enviadas.

• Si la variable enviada es inmutable, se llama “por valor”
• Si la variable enviada es mutable se llama “por referencia”
• Si a la variable se le asigna otra referencia, por ejemplo a nueva lista,
 la referencia original no se pierde, funciona como llamado “por valor”

http://www.python-course.eu/passing_arguments.php

http://www.python-course.eu/passing_arguments.php

Pase de Parámetros

>>> def foo(x):
… x.append(2)
... x = [1,2]
...

>>> r = [1,2]

>>> foo(r)

>>> r
[3, 3, 2]

Parámetros *
Las funciones pueden recibir un número arbitrario de argumentos

 >>> def print_args(*args):
 print args

 >>> print_args(3, 4, 10, ‘hey’)
 (3, 4, 10, ‘hey’)

Como vemos los argumentos se reciben en tuplas.

Si se requiere, se pueden indicar argumentos posicionales.
Deben preceder a los parámetros arbitrarios.

>>> def print_args(pos1,pos2,*args):
 print (pos1, pos2, args)

* en el llamado de funciones
Al llamar funciones, indicamos con un asterisco que la
secuencia son parámetros enviados por posición.

 >>> def print_args(a,b,c):
 print (a,b,c)

 >>> print_args(3, 4, 10)
 (3, 4, 10)

 >>> a = (3, 4, 10)

 >>> print_args(*a)
 (3, 4, 10)

Parámetros por nombre arbitrarios **

El mecanismo para recibir un número arbitrario de parámetros
con nombre utiliza ahora doble asterisco.

 >>> def print_args(**kwargs):
 print (kwargs)

 >>> print_args(a=3, b=4, c=10)
 {‘a’=3, ‘b’=4, ‘c’=10}

 Al igual que con los parámetros por posición, también se
puede usar ** al llamar la función, pasando ahora un
diccionario.

Funciones sin return

http://home.alphalink.com.au/~roglen/lazerbeam.JPG

 Todas las funciones en Python tienen un valor de
regreso.

incluso si no hay una línea con return dentro de ellas.

Estas funciones regresan un valor None

 None es una constante especial del lenguaje.
 None es similar a NULL, void, o nil en otros lenguajes.
 None es también equivalente a Falso.
 El intérprete no imprime None.

http://home.alphalink.com.au/~roglen/lazerbeam.JPG

¿Sobrecargado de Funciones? No

No hay sobrecargado de funciones en Python.

Dos funciones no pueden tener el mismo nombre, incluso si
tienen diferentes argumentos.

Las funciones son ciudadanos de 1ra. clase
Las funciones pueden ser usadas como cualquier otro objeto.
Pueden ser :

Argumentos de funciones
Valores de regreso de funciones
Asignadas a variables
Elementos en tuplas, listas, etc.
…

>>> def myfun(x):
 return x*3

>>> def applier(q, x):
 return q(x)

>>> applier(myfun, 7)
21

CIS 391 Introduction to Artificial Intelligence Fall 2008 (Slides)

Funciones “de Fábrica”

http://docs.python.org/2/library/functions.html

 El intérprete de Python incluye varias funciones “incluidas de
fábrica” las cuales están siempre disponibles:

http://docs.python.org/2/library/functions.html

Objetos Tipo Colección

Python utiliza varios tipos de datos compuestos, que
se utilizan para agrupar otros valores.

http://3.bp.blogspot.com/-xQ2ObqFWBuk/Tp5hoUP9BKI/AAAAAAAANtc/mEx9vVLrqW0/s1600/New+York+Comic-Con+2011+Exclusive+Star+Wars+Inspired+The+Jellatic+Empire+Stormtrooper+Jelly+Bots+Print+by+The+Jelly+Empire.jpg

http://3.bp.blogspot.com/-xQ2ObqFWBuk/Tp5hoUP9BKI/AAAAAAAANtc/mEx9vVLrqW0/s1600/New+York+Comic-Con+2011+Exclusive+Star+Wars+Inspired+The+Jellatic+Empire+Stormtrooper+Jelly+Bots+Print+by+The+Jelly+Empire.jpg

Objetos tipo Secuencia

Tuplas, Listas, Cadenas

http://2.bp.blogspot.com/-756R3bXcgGI/TxXIkYYbJHI/AAAAAAAAASY/azvh5BdmeY4/s320/boogie3.jpg

http://2.bp.blogspot.com/-756R3bXcgGI/TxXIkYYbJHI/AAAAAAAAASY/azvh5BdmeY4/s320/boogie3.jpg

Objetos Tipo Secuencia

Tupla
Una secuencia ordenada e inmutable de elementos.
Los elementos pueden ser de diferentes tipos, incluyendo otras

colecciones.

Cadenas (Strings)
Inmutables
Conceptualmente iguales a las Tuplas.

Listas
Una secuencia mutable de elementos de diferentes tipos.

Las secuencias usan una sintaxis
similar

 Los tres tipos de secuencias
 comparten la misma funcionalidad y sintaxis.

Diferencia Clave:
 Tuplas y cadenas son inmutables.
 Las listas son mutables.

 Las operaciones que veremos a continuación,
son aplicables a todas las colecciones tipo
secuencia.

Colecciones tipo secuencia

• Las tuplas se definen como una lista de valores (elementos)
separados por comas, entre paréntesis .

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

• Las listas igual, solo que entre corchetes.
>>> li = [“abc”, 34, 4.34, 23]

• Las cadenas se escriben entre comillas (“, ‘, “““).
>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “““Esta es una multi-línea
que utiliza triple comillas dobles.”””

Notación tipo arreglo
• Podemos acceder a los elementos individuales de una tupla,

lista o cadenas utilizando la notación de corchetes con
índices. Como los arreglos clásicos de C#, Java, C.

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Segundo elemento de la tupla.
 ‘abc’

>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Segundo elemento de la lista.
 34

>>> st = “Hello World”
>>> st[1] # Segundo elemento de la cadena.
 ‘e’

Índices positivos y negativos

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Índice positivo: se cuenta de izquierda a derecha empezando en 0.
 >>> t[1]
 ‘abc’

Índice negativo: se cuenta de derecha a izquierda, iniciando en –1.
 >>> t[-3]
 4.56

Cortes (Slicing)

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Regresa una copia del contenedor con un subconjunto de los
miembros originales. Empieza a copiar desde el primer índice y
se detiene antes del segundo.

 >>> t[1:4]
 (‘abc’, 4.56, (2,3))

También se pueden usar índices negativos.

 >>> t[1:-1]
 (‘abc’, 4.56, (2,3))

0 1 2 3 4H o l a
-4 -3 -2 -1

Copiando toda la secuencia

Para regresar una copia de toda la secuencia, puedes usar [:].
 >>> t[:]
 (23, ‘abc’, 4.56, (2,3), ‘def’)

La diferencia entre estas dos líneas es muy importante:

>>> list2 = list1 # Los nombres hacen referencia a la misma lista
 # Si cambiamos una se cambian ambas

>>> list2 = list1[:] # Dos copias diferentes, dos referencias

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

El operador ‘in’
Una prueba booleana para ver si un elemento está en la secuencia:

>>> t = (1, 2, 4, 5)
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

En las cadenas, prueba si una subcadena está en la secuencia
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

El operador +

 El operador + produce una nueva tupla, lista o cadena cuyos
valores son la concatenación de los argumentos.

>>> (1, 2, 3) + (4, 5, 6)
 (1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
 [1, 2, 3, 4, 5, 6]

>>> “Hello” + “ ” + “World”
 ‘Hello World’

El operador *

 El operador * produce una nueva tupla, lista o cadena cuyos
valores son la repetición de los argumentos.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello’

Mutabilidad

http://blogs.peru21.pe/comics21/post02-xmen03.jpg

Tuplas vs Listas

http://blogs.peru21.pe/comics21/post02-xmen03.jpg

Listas: Mutables

>>> li = [‘abc’, 23, 4.34, 23]
>>> li[1] = 45
>>> li  

[‘abc’, 45, 4.34, 23]

• Podemos modificar la lista in place.

• El nombre li sigue apuntando a la misma dirección de memoria,
después de la actualización.

Tuplas: Inmutables
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
 File "<pyshell#75>", line 1, in -toplevel-
 tu[2] = 3.14
TypeError: object doesn't support item assignment

 No puedes cambiar una tupla.

 Se puede crear una nueva tupla y asignar la nueva referencia al

nombre original.

>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

Gracias a esto las tuplas son más eficientes que las listas.

Operaciones solo para Listas (1)

>>> li = [1, 11, 3, 4, 5]

 append()

>>> li.append(‘a’) # Se utiliza un método de la lista
>>> li
[1, 11, 3, 4, 5, ‘a’]

 insert()

>>> li.insert(2, ‘i’)
>>>li
[1, 11, ‘i’, 3, 4, 5, ‘a’]

Operaciones solo para Listas (2)

extend()

El operador + crea una nueva lista (con una nueva referencia)
extend altera la lista li in place.

>>> li.extend([9, 8, 7])
>>>li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

Cuidado:
extend recibe una lista.
append recibe un solo elemento.

>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10, 11, 12]]

Operaciones solo para Listas (3)
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

index()

>>> li.index(‘b’) # indice de primera ocurrencia*
1

 *existen otras formas

count()

>>> li.count(‘b’) # numero de ocurrencias
2

remove()

>>> li.remove(‘b’) # remueve la primera ocurrencia
>>> li
 [‘a’, ‘c’, ‘b’]

Listas
>>> li = [5, 2, 6, 8]

reverse()

>>> li.reverse() # ordena en reversa la lista *in place*
>>> li
 [8, 6, 2, 5]

sort()

>>> li.sort() # ordena la lista *in place*
>>> li
 [2, 5, 6, 8]

>>> li.sort(alguna_funcion)
 # se ordena utilizando la función recibida

Listas y Tuplas

Las listas son mas lentas pero poderosas que las tuplas.
Las listas se pueden modificar y permiten mas operaciones.
Las tuplas son mas rápidas pero son inmutables.

Para convertir entre ellas utiliza las funciones list() y tuple():
li = list(tu)
tu = tuple(li)

zip y map

>>> lista = ['1','2','3']

>>> lista2 = ['Ana','Tom','Zoe']

>>> list(zip(lista,lista2))
[('1', 'Ana'), ('2', 'Tom'), ('3', 'Zoe')]

>>> map(int,lista)
[1, 2, 3]

Una colección de
asociaciones:

Los Diccionarios

http://celestacha.blogspot.mx/2011/01/quino-con-sentido-democratico.html

http://celestacha.blogspot.mx/2011/01/quino-con-sentido-democratico.html

Los diccionarios contienen un conjunto desordenado de
parejas clave:valor.

 Las claves pueden ser cualquier tipo de dato inmutable.

 Los valores pueden ser de cualquier tipo.

 Un diccionario puede almacenar diferentes tipos de datos.

Tu puedes:

definir
modificar
ver
recuperar
borrar

los pares clave-valor
en el diccionario

http://e1.i1.yimg.com/espanol.docs.yahoo.com/images/ent/comics/condorito_main180.gif

>>> d = {‘usuario’:‘bozo’, ‘pswd’:1234}
>>> d[‘usuario’]

‘bozo’

>>> d[‘pswd’]

1234

>>> d[‘bozo’]
Traceback (innermost last):

 File ‘<interactive input>’ line 1, in ?

KeyError: bozo

CIS 391 Introduction to Artificial Intelligence Fall 2008 (Slides)

Definir y recuperar en diccionarios

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> tel.has_key('guido')
True

http://www.tucoo.com/vector/b_snake/images/snake001.png
http://pyspanishdoc.sourceforge.net/tut/node7.html#SECTION007500000000000000000

http://www.tucoo.com/vector/b_snake/images/snake001.png
http://pyspanishdoc.sourceforge.net/tut/node7.html#SECTION007500000000000000000

Actualizando Diccionarios

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’] = ‘clown’
>>> d
{‘user’:‘clown’, ‘pswd’:1234}

Las claves deben de ser únicas.
Al asignar a una clave existente, remplaza el valor.

>>> d[‘id’] = 45
>>> d
{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg/300px-Hash_table_4_1_1_0_0_1_0_LL.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg/300px-Hash_table_4_1_1_0_0_1_0_LL.svg.png

Hashing en Diccionarios

http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg/300px-Hash_table_4_1_1_0_0_1_0_LL.svg.png

Los diccionarios no tienen orden.

Esto es por que se
implementan utilizando hashing

hashing

http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg/300px-Hash_table_4_1_1_0_0_1_0_LL.svg.png

Removiendo elementos de los
diccionarios

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

del

>>> del d[‘user’] # Remueve un par clave-valor.
>>> d
{‘p’:1234, ‘i’:34}

clear()

>>> d.clear() # Remueve todos los pares.
>>> d
{}

>>> a=[1,2]
>>> del a[1] # (del también se usa en listas)
>>> a
[1]

Métodos útiles para acceder a
diccionarios

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

keys()

>>> d.keys() # Lista de claves
[‘user’, ‘p’, ‘i’]

values()
>>> d.values() # Lista de valores.
[‘bozo’, 1234, 34]

items()
>>> d.items() # Diccionario como una lista de tuplas.
[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

in
>>> if 'z' in dict: print dict['z'] # No Key Error

Expresiones Lógicas

http://www.virginmedia.com/images/spock.jpg

http://www.virginmedia.com/images/spock.jpg

True y False
True y False son constantes en Python.

Otros valores equivalentes a True o False:
False: cero, None, contenedores u objetos vacíos.
True: números distintos a cero, objetos no vacíos.

Operadores de comparación: ==, !=, <, <=, etc.
X y Y tienen el mismo valor: X == Y
Si comparas X is Y :
X y Y son dos variables que hacen referencia al mismo objeto.

Se pueden combinar expresiones booleanas.
Utilizando and, or y not.
Para evitar ambigüedad se necesitan paréntesis.

Propiedades de and y or
 Realmente and y or no regresan True o False.

 Lo que regresan es el valor de una de sus sub-expresiones

(el cual podría no ser booleano).

X and Y and Z
Si todas son verdaderas, regresa el valor de Z.
De otro modo, regresa el valor de la primera expresión falsa.

X or Y or Z
Si todas son falsas, regresa el valor de la expresión Z.
De otro modo, regresa el valor de la primera expresión verdadera.

 and y or utilizan evaluación lazy, así que no se siguen
evaluando las siguientes sub-expresiones, al resolver la
expresión lógica.

http://smurfs.wikia.com/wiki/Lazy_Smurf

http://smurfs.wikia.com/wiki/Lazy_Smurf

Expresiones condicionales

x = valor_verdadero if condición else valor_falso

Utiliza también evaluación Lazy:

Primero, se evalúa condición
Si regresa True, valor_verdadero se evalúa y regresa.
Si regresa False, valor_falso se evalúa y regresa.

Control de Flujo

Condiciones if

if x == 3:
 print “x vale 3.”
elif x == 2:
 print “x vale 2.”
else:
 print “x vale otra cosa.”
print “Esto ya está fuera del ‘if’.”

Fíjate:
 El uso de bloques indentados.
 Dos puntos (:) de la expresión booleana.

Ciclos while

>>> x = 3
>>> while x < 5:
 print x, "dentro del loop"
 x = x + 1
3 dentro del loop
4 dentro del loop
>>> x = 6
>>> while x < 5:
 print x, "dentro del loop"

>>>

break y continue

 Puedes utilizar la palabra reservada
break para salir del ciclo while
completamente.

 Puedes utilizar la palabra reservada
continue dentro de un ciclo, para
detener el procesamiento de la iteración
actual para ir inmediatamente a la
siguiente.

ciclos for
 Un ciclo for recorre cada uno de los elementos

de una colección, o cualquier objeto “iterable”

for <elemento> in <colección>:  
<sentencias>

 Si <colección> es una lista o tupla, el for recorre
cada elemento de la colección.

 Si <colección> es una cadena, entonces el
ciclo recorre cada carácter de la cadena.

 for caracter in “Hello World”:
 print caracter

ciclos for

for <elemento> in <colección>:  
<sentencias>

 <elemento> puede ser complejo.

 Cuando los elementos de una <colección> son a su
vez secuencias,entonces <elemento> puede ser una
“plantilla” de la estructura de los elementos.

 Esto facilita el acceso a los elementos internos.

for (x, y) in [(a,1), (b,2), (c,3), (d,4)]:
 print x

La función range()

 Normalmente queremos iterar sobre una secuencia de enteros
que inician en cero.

 La función range() toma un entero como parámetro y regresa
una lista de números del cero a uno antes del número que
recibió.

 range(5) regresa [0,1,2,3,4]

 Para imprimir los números uno a uno:  

 for x in range(5):  
 print x

 Equivalente al clásico:
 for(int i=0; i<=5; i++)  

Diccionarios y for
>>> edades = { "Sam " :4, "Mary " :3, "Bill " :2 }
>>> edades
{'Bill': 2, 'Mary': 3, 'Sam': 4}
>>> for nombre in edades.keys():
 print nombre, edades[nombre]

Bill 2
Mary 3
Sam 4

>>> for key in sorted(edades.keys()):
 print key, edades[key]

>>> for key in edades:
 print key, edades[key]

Generación de
Listas por

Comprensión

Listas por comprensión
Una característica poderosa del lenguaje.

 Generas una nueva lista aplicando una función a cada
elemento de la lista original.

[expresión for nombre in lista]

 La expresión es alguna operación sobre nombre.

 Cada elemento de la lista, se asigna a nombre. y se

calcula el nuevo elemento utilizando la expresión.

 Los elementos resultantes se van colectando en una

nueva lista la cual se regresa como resultado de
comprensión.

>>> li = [3, 6, 2, 7]
>>> [elem*2 for elem in li]
[6, 12, 4, 14]

Listas por comprensión
[expresión for nombre in lista]

 Si la lista contiene elementos de distintos tipos,
entonces la expresión debe ser capaz de operar
correctamente con todos los elementos de la lista.

 Si los elementos de la lista son a su vez
contenedores, entonces el nombre puede consistir
de patrones de nombres que “empaten” con los
elementos de la lista.

>>> li = [(‘a’, 1), (‘b’, 2), (‘c’, 7)]
>>> [n * 3 for (x, n) in li]
[3, 6, 21]

Listas por comprensión
[expresión for nombre in lista]

 La expresión puede contener funciones.

>>> def subtract(a, b):  
 return a – b

>>> oplist = [(6, 3), (1, 7), (5, 5)]
>>> [subtract(y, x) for (x, y) in oplist]
[-3, 6, 0]

Listas por comprensión: Filtros

[expresión for nombre in lista if filtro]

 La expresión booleana filtro determina si el
elemento se evaluará o no por la
expresión.

 Si filtro es False entonces el elemento se

omite de la lista antes de que se evalúe la
comprensión.

Con filtros y anidadas

[expresión for nombre in lista if filtro]

>>> li = [3, 6, 2, 7, 1, 9]
>>> [elem * 2 for elem in li if elem > 4]
[12, 14, 18]

 Como la operación toma una lista como entrada y
produce una lista como salida, éstas se pueden
anidar fácilmente:

>>> li = [3, 2, 4, 1]
>>> [elem*2 for elem in  

 [item+1 for item in li]]
[8, 6, 10, 4]

Como leer archivos
y algunas otras funciones Built-In

http://www.wallsave.com/wallpapers/1920x1080/counter-strike-hd-pc/3399692/counter-strike-hd-pc-juegos-general-imagen-matrix-by-andre-w-jpg-3399692.jpg

http://www.wallsave.com/wallpapers/1920x1080/counter-strike-hd-pc/3399692/counter-strike-hd-pc-juegos-general-imagen-matrix-by-andre-w-jpg-3399692.jpg

Como leer archivos de texto

archivo = open(‘nombre_de_archivo’,’rU’)
una_cadena = archivo.read()
for line in archivo:  
 print line
archivo.close()

Operaciones
con

Cadenas

Operaciones con cadenas

 La clase string tiene varios métodos que son muy
útiles para dar formato a las cadenas de texto.

>>> “hello”.upper()
‘HELLO’

En la documentación podrás encontrar muchas más.

 Nota: usa <string>.strip() para eliminar los
saltos de línea de los archivos de texto.

Operador % para formato de cadenas
 El operador % te permite construir cadenas a partir de

diferentes tipos de datos a manera de “llena lo espacios”.

Por ejemplo podemos indicar cuantos decimales pueden imprimirse.

 Muy parecido al comando sprintf de C.

>>> x = “abc”
>>> y = 34
>>> “%s xyz %d” % (x, y)
‘abc xyz 34’

 La tupla después del operador % se utiliza para llenar los
espacios marcados por %s y %d.

 Debes revisar la documentación para ver otros códigos de

formato.

Imprimiendo cadenas
 Puedes imprimir una cadena a la pantalla utilizando print.

>>> print “%s xyz %d” % (“abc”, 34)
abc xyz 34

 print automáticamente añade una nueva línea al final de la
cadena.

 Si incluyes una lista de objetos, los concatenará con un espacio
entre ellos.

>>> print “abc” >>> print “abc”, “def”
abc abc def

 Tip útil:
 >>> print “abc”,

 No añade una nueva línea, sólo agrega un espacio.

De cadena a lista a cadena

join pasa una lista de cadenas a una sola cadena. 
 

 <cadena_separadora>.join(<lista>)

 >>> “;”.join([“abc”, “def”, “ghi”])
 “abc;def;ghi”

split convierte una cadena a una lista de cadenas. 
 

 <alguna_cadena>.split(<cadena_separadora>)

 >>> “abc;def;ghi”.split(“;”)
 [“abc”, “def”, “ghi”]

Fíjate en el cambio de responsable de la operación

split, join y listas por comprensión

 split y join se utilizan a veces en conjunto con
comprensión de listas :

>>> " ".join([s.capitalize() for s in "this is a test ".split(" ")])
'This Is A Test‘

>>> # Por partes:
>>> "this is a test" .split(" ")
['this', 'is', 'a', 'test']
>>> [s.capitalize() for s in "this is a test" .split(" ")]
['This', 'Is', 'A', 'Test']
>>>

str()

 La función built-in str() puede convertir
cualquier tipo de dato a una cadena.
 Puedes definir como será este comportamiento

para los tipos de datos definidos por el usuario,
o redefinir el de muchos tipos.

>>> “Hello ” + str(2)
“Hello 2”

Otras monerías

http://imgs.xkcd.com/comics/python.png http://www.phdcomics.com/

http://imgs.xkcd.com/comics/python.png
http://www.phdcomics.com

Notación Lambda

 Pueden definirse funciones anónimas.
 Esto se usa cuando queremos pasar una función

sencilla como argumento a otra función..  

 >>> applier(lambda z: z * 4, 7)
 28

 El primer argumenro a nuestra función applier() es una
función anónima que regresa la entrada multiplicada
por cuatro.

 Nota: Al utilizar la notación lambda solamente podemos
hacer funciones de una expresión.

Valores por defecto para argumentos
 Puedes especificar valores por defecto, es decir

valores que se tomarán en caso de que no se envíen
al llamar la función.

 Al incluir valores por defecto, los argumentos se
hace opcionales.

>>> def myfun(b, c=3, d=“hello”):  
 return b + c

>>> myfun(5,3,”hello”)
>>> myfun(5,3)
>>> myfun(5)

Todas las funciones anteriores regresan 8.

Cuidado con Valores por defecto
 Los valores por defecto se inicializan una sola vez.

Por ejemplo:

def f(a, L=[]):
 L.append(a)
 return L

print f(1)
print f(2)
print f(3)

 Imprimiría:
[1]
[1, 2]
[1, 2, 3]

Podemos corregirlo así:
def f(a, L=None):
 if L is None:
 L = []
 L.append(a)
 return L

Módulos

http://cablemodem.fibertel.com.ar/kenshyura/taringa/n6ul3r.jpg

http://cablemodem.fibertel.com.ar/kenshyura/taringa/n6ul3r.jpg

import y módulos

Sirve para utilizar clases y funciones definidas en otros archivos.

Un módulo en Python es un archivo del mismo nombre con

extensión .py.

Como en Java import, C# using y en C++ include.

Tres maneras de utilizar el comando:
 import algun_archivo
 from algun_archivo import *
 from algun_archivo import className

¿Cuál es la diferencia?
 Que se importa del archivo y que nombre tienen las referencias

después de ser importadas.

import
import algun_archivo

 Todo lo que se encuentra en archivo.py es importado.
 Para referirse a los elementos importados se debe agregar el

nombre del módulo antes del nombre:

algun_archivo.className.method(“abc”)
algun_archivo.myFunction(34)

from archivo import *

 También se importa todo, pero ahora no es necesario agregar el
nombre del módulo antes ya que todo se importó al espacio de
nombres actual.

 ¡Cuidado! Esto puede redefinir funciones o clases que

se llamen igual en tu programa y en el módulo.

className.method(“abc”)
myFunction(34)

import
from algun_archivo import className

Solo el elemento className de algun_archivo.py es importado.
Después de importar className, se puede utilizar sin necesidad de

agregar el prefijo del módulo, ya que se trajo al espacio de
nombres actual.

className.method(“abc”) #Esto se importó

myFunction(34) #Esta función no

Podemos importar la función también:

from algun_archivo import className, myFunction

Ejecutando módulos como scripts
Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print b,
 a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result

> python fibo.py <arguments>

if __name__ == "__main__":
 import sys
 fib(int(sys.argv[1]))

 Agregando:
 if __name__ == "__main__":

 Al final de un módulo, nos
permite usarlo también como
script.

 El código en el bloque se

ejecutará, cuando el módulo
se llame desde la línea de
comandos.

 Nota el import sys

Rutas de búsqueda de módulos

Cuando importamos un modulo por ejemplo spam, el intérprete
inicia una búsqueda:

Primero busca si hay un built-in con ese nombre.

Si no se encuentra busca un archivo llamado spam.py en una lista
de directorios dada por la variable sys.path.

sys.path se inicializa desde con estas localidades:

• El directorio que contiene el script de entrada (el directorio actual).
• La variable de entorno PYTHONPATH (una lista de directorios,
utiliza la misma sintaxis que la variable PATH).
• Después de la inicialización, los programas de Python pueden
modificar la variable sys.path.

El directorio actual es insertado al principio de las rutas, adelante de
la ruta de librerías estándar.

Método dir()
>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__',
 '__stdin__', '__stdout__', '_getframe', 'api_version', 'argv',
 'builtin_module_names', 'byteorder', 'callstats', 'copyright',
 'displayhook', 'exc_clear', 'exc_info', 'exc_type', 'excepthook',
 'exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getdlopenflags',
 'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxunicode',
 'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache',
 'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval', 'setdlopenflags',
 'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout',
 'version', 'version_info', 'warnoptions']

La función built-in dir() nos da una lista de los nombres definidos en
un módulo.

Programación
Orientada a Objetos

http://www.bonkersworld.net/object-world/

http://www.bonkersworld.net/object-world/

¡Son todos objetos!

Todo en Python es realmente un objeto.
Hemos visto pistas de esto antes… 

“hello”.upper()  
list3.append(‘a’)  
dict2.keys()

Estos se ven como llamadas a métodos en Java o C++.
Podemos definir fácilmente nuevas clases de objetos, para

complementar a los built-in.

De hecho la programación en Python, normalmente se
hace con el paradigma orientado a objetos.

Definiendo una Clase

Una clase (class) es un tipo de dato especial que
define como construir cierto tipo de objetos.
class también almacena ciertos datos que se comparten por

todas las instancias de la clase.
Instancias son aquellos objetos que han sido creados siguiendo

la definición especificada dentro de una clase en particular.

class estudiante:  
“““Representa a un estudiante.””” 
def __init__(self,n,e):  
 self.nombre = n  
 self.edad = e  
def get_edad(self):  
 return self.edad

Definiendo una Clase
class estudiante:  

“““Representa a un estudiante.””” 
def __init__(self,n,e):  
 self.nombre = n  
 self.edad = e  
def get_edad(self):  
 return self.edad

Se definen los métodos de una clase incluyendo
definiciones de funciones dentro del bloque de la
clase.
Los métodos para las instancias deben llevar un argumento

llamado self el cual está atado a la instancia que ejecutará el
método.

El método constructor se llama __init__ .

Instanciando objetos
No existe la palabra reservada new como en

otros lenguajes.
Se llama simplemente al nombre de la clase con

la notación () y se asigna el resultado a un
nombre.

Si se pasan argumentos, estos se pasan al
método __init__().

 Aquí, el método __init__() para la clase estudiante
recibe “Ana” y 21 y la nueva instancia se ata al nombre
b:

b = estudiante(“Ana”, 21)

self

El primer argumento de cada método es una
referencia a la instancia que lo llama.

Por convención el nombre del argumento es
self.

En __init__, self es una referencia al objeto
que está siendo creado;

self es similar a la palabra reservada this en
Java o C++.

self

Cuando defines un método debes especificar el
argumento self explícitamente.

No así cuando llamas al método.

Python lo pasa por ti automáticamente.

Al definir el método: Al llamar al método:
(este código está dentro del
bloque de la clase.)

def set_edad(self, num): >>> x.set_edad(23)  
self.edad = num

Borrado de Instancias

Cuando termines de utilizar un objeto, no es
necesario que lo borres explícitamente.
Python recolección automática de basura.
Python automáticamente detecta cuando las

referencias a un espacio de memoria han salido
del ámbito y libera esa memoria.

Normalmente funciona muy bien, muy pocas fugas
de memoria.

No hay métodos destructores.

La clase estudiante

class estudiante:  
“““Representa a un estudiante.””” 
def __init__(self,n,e):  
 self.nombre = n  
 self.edad = e  
def get_edad(self):  
 return self.edad

Sintaxis tradicional de acceso

>>> f = estudiante(“Bob Smith”, 23)

>>> f.nombre # Access an attribute.
“Bob Smith”

>>> f.get_edad() # Access a method.
23

Acceso a miembros desconocidos

Problema: En ocasiones el nombre de un atributo
no se conoce si no hasta el tiempo de ejecución.

Solución: getattr(object_instance, string)

object_instance es la referencia al objeto que
accederemos.

string es una cadena que contiene el nombre del método o
atributo de la instancia.

 getattr(object_instance, string) regresa una
referencia al método o atributo.

Acceso a miembros desconocidos

>>> f = estudiante(“Bob Smith”, 23)

>>> getattr(f, “nombre”)
“Bob Smith”

>>> getattr(f, “get_edad”)
 <method get_age of class studentClass at 010B3C2>

>>> getattr(f, “get_edad”)() # llamamos a la referencia.
23

>>> getattr(f, “get_birthday”) # no existe el método

hasattr(object_instance,string)

>>> f = estudiante(“Bob Smith”, 23)

>>> hasattr(f, “nombre”)
True

>>> hasattr(f, “get_edad”)
True

>>> hasattr(f, “get_birthday”)
False

Dos tipos de atributos

Las clases tiene métodos y atributos; Los atributos son datos
con los que representamos las propiedades de los objetos.

Atributos tipo dato
Son variables que pertenecen a cierta instancia particular de la clase.
Cada instancia tiene su propio valor.
Son los atributos más comunes.

Atributos de la clase
Pertenece a toda la clase.
Todas las instancias de la clase comparten el mismo valor.
Son las propiedades static en otros lenguajes.
Sirven para

constantes para todas las instancias.
contadores de cuantas instancias se han creado.

Atributos tipo dato

Los atributos tipo dato son creados e inicializados por el
método __init__().
Los atributos se crean al asignarles referencias a los nombres.
Dentro de la clase los atributos tipo dato se refieren con self

por ejemplo, self.nombre
class profesor:  

“Representa a los profesores” 
def __init__(self,n):  
 self.nombre = n  
def print_nombre(self):  
 print self.nombre

Atributos de la clase
Como todas las instancias de la clase, comparten la misma

referencia:
cuando cualquier instancia cambia el valor, este cambia para todas las

instancias.

Los Atributos de la clase se definen:
dentro de la definición de la clase.
fuera de cualquier método.

Como solo hay uno de estos atributos por cada clase y no por
instancia, estos se accesan utilizando una notacion diferente:

Se accesa a los atributos de la clase de la siguiente manera:

 self.__class__.name

class sample: >>> a = sample() 
 x = 23 >>> a.increment() 
def increment(self): >>> a.__class__.x 
 self.__class__.x += 1 24

Atributos de datos y de la clase

class counter:  
overall_total = 0  
 # class attribute  
def __init__(self):  
 self.my_total = 0  
 # data attribute  
def increment(self):  
 counter.overall_total = \  
 counter.overall_total + 1  
 self.my_total = \  
 self.my_total + 1

>>> a = counter()  
>>> b = counter()  
>>> a.increment()  
>>> b.increment()  
>>> b.increment()  
>>> a.my_total  
1  
>>> a.__class__.overall_total  
3  
>>> b.my_total  
2  
>>> b.__class__.overall_total  
3

Herencia

Una clase puede extender la definción de otra clase.
Permite el uso o extensión de métodos y atributos que ya han sido

definidos en la clase base.
Nueva clase : subclase. Original: padre, clase base o superclase

Para definir una subclase, se indica con paréntesis el
nombre de la superclase.  
 class estudiante_ia(estudiante):

Python permite herencia múltiple.

Redefinición de Métodos
Para redefinir un método de la clase padre, solo se

incluye una nueva definición en la subclase
utilizando el mismo nombre.
El código anterior no se ejecutará.

Para ejecutar el método de la clase padre junto con la
nueva definición se debe llamar explícitamente la
versión del padre.

clasePadre.metodoPadre(self, a, b, c)

En este caso si se debe agregar el argumento self
explícitamente.

 

Ejemplo Herencia
class estudiante:  

“Clase estudiante.”

 def __init__(self,n,e):  
 self.nombre = n  
 self.edad = e  

 def get_edad(self):  
 return self.edad

class estudiante_ia(estudiante):  
“Estudiante de IA.” 
 
def __init__(self,n,e,esp):  
 #Se llama al __init__ de la clase padre

 estudiante.__init__(self,n,a)
 self.especialidad = esp  

 
def get_edad(): #Se redefine el método completamente  
 print “Age: ” + str(self.edad)

Métodos y Atributos
Built-in

Métodos Built-in de las clases
Las clases contienen muchos métodos y atributos que

están incluidos por Python aunque uno no los haya
definido explícitamente.
La mayoría de estos métodos definen funcionalidad

automática que se dispara por operadores especiales o el
uso de la clase.

Los atributos built-in definen información que debe ser
almacenadad para todas las clases.

Todos los miembros built-in tienen subguiones dobles
encerrando a sus nombres por ejemplo:

 __init__ __doc__

Métodos Built-in de las clases
Por ejemplo el método __repr__ existe para todas las

clases, y este puede ser redifinido.

Este método especifica como se convierte una instancia de
la clase a una cadena.

print f llamaría a f.__repr__() para producir una cadena
que represente al objeto f.

Si tecleas f en el prompt y presionas ENTER, esto llamaría
también al método __repr__ para determinar lo que se
mostraría al usuario. Si no se redefine sería el nombre de la
clase a la que pertenece f.

Métodos Built-in de las clases: Ejemplo

class student:  
 ...  
 def __repr__(self):  
 return “I’m named ” + self.full_name  
 ...  

>>> f = student(“Bob Smith”, 23)
>>> print f
I’m named Bob Smith
>>> f
“I’m named Bob Smith”

Métodos Built-in de las clases

Más ejemplos de métodos que se pueden redefinir:
__init__ : Constructor de la clase.
__cmp__ : Define como funciona == para la clase.
__len__ : Define como funciona len(obj .
__copy__ : Define como se copian las instancias.

Otros métodos built-in te permiten utilizar la
notación de corchetes [] como los arreglos o
paréntesis como () el llamado de una función .

Atributos Built-in

Estos atributos existen para todas las clases:
__doc__ : Variable que almacena la cadena de

documentación de la clase.
__class__ : Variable que tiene una referenca a la

clase desde cualquier instancia de ella.
__module__ : Variable que tiene una referencia al

modulo en el que se define determinada clase.
__dict__ :El diccionario que es realmente el

espacio de nombres para la clase (pero no sus
superclases).

Método built-in muy útil en estos casos:

dir(x) regresa una lista de todos los métodos y
atributos definidos para el objeto x.

Atributos Built-in: Ejemplo

>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__
A class representing a student.

>>> f.__class__
< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”, 34)

Datos privados

Todo atributo que tiene dos subguiones antes del nombre
(pero ninguno al final) se considera privado.

Nota: 
Doble subguión al incio y al final está reservado para métodos
y atributos built-in de la clase.

Note:  
No hay una especificación ‘protected’ en Python; así que las
subclases no podrían acceder a estos miembros tampoco.

Esta presentación se basa en tres archivos disponibles en línea para
el curso: CIS 391 Introduction to Artificial Intelligence Fall 2008 (Slides) de la
universidad de Penn State ya no están en el URL original.

La documentación oficial de python.org.

Google´s Python class:
http://code.google.com/intl/es-419/edu/languages/google-python-class/index.html

Otros:
Distribución de Python usada en clase:
 http://www.enthought.com/
IDE:
 http://www.jetbrains.com/pycharm/
La plantilla comic standard disponible gratuitamente en:
 http://www.keynotezone.com/themes/comics/index.html
Imágenes de encontradas con Google, sus URLs están en las páginas

individuales. La mayoría Creative Commons.

Correcciones y sugerencias a: mariosky@gmail.com
Disponible como archivo keynote para editar, en github.com/mariosky/

presentaciones

http://code.google.com/intl/es-419/edu/languages/google-python-class/index.html
http://www.jetbrains.com/pycharm/
http://www.keynotezone.com/themes/comics/index.html
mailto:mariosky@gmail.com
http://github.com/mariosky/presentaciones
http://github.com/mariosky/presentaciones

