Introduccion rapida a Python

Mario Garcia-Valdez




o ks un lenguaje dinawmico e
interpretado.

® [e cadiqo libre.

® Awmigable para principiantes.

® Disponible en:
http:/www.python.org

1telast):

ame = getNodename ()

=symbol.sym_name.get(int(ast([0)), ast|

t 1+ % (nodename, labe

isinstancelast(l), str):

if astll).stripl):
print % ast[1)

else:

print

else:;
print
children = []
for n, child in enumeratelast([1:)):

children. append(doturiteichild))

print % nodename,

for name in children:
orin % name

http:/brainstomping.files.wordpress.com/2011/12/nick_furia_what_the.jpg http:/upload.wikimedia.ora/wikipedia/en/c/c3/Python_add%_syntax.png



http://www.python.com
http://brainstomping.files.wordpress.com/2011/12/nick_furia_what_the.jpg
http://upload.wikimedia.org/wikipedia/en/c/c3/Python_add5_syntax.png

e Pesarrollado por Guido van Rossum a
principio de los noventas.

o El nombre es por el grupo de edmicos ingleses
Monty Python.

http:/blogs-images.forbes.com/davidewalt/files/201 1/0%/monty-python-1020x1024.jpg



http://blogs-images.forbes.com/davidewalt/files/2011/03/monty-python-1020x1024.jpg

Ejemplo Basico

X = 34 - 23 # Comentario
y = # Otro
Z = 3.45
Z == 3.45 ==
X = X + 1
Yy =Yy + # Concatenacion de cadenas
X



Entendiendo el cadigo

La indentacion es parte del lenguaje

Los tipos de las “variables” no se tienen que declarar
La asignhacion usa =y se compara con ==
Los simbolos + - */ % funcionan como siempre

Se concatena con +.

Se usa de forma especial % para derle formato a las cadenas (como el
printf de C)

Los operadores logicos son palabras (and, or, not)

La funcion para imprimir en pantalla es print ().



Tipos Basicos

Enteros
z =5 // 2

# El resultado es 2, division entera.

Flotantes
X = 3.456

Cadenas
Se puede usar © © o0 ' ' para indicarlas.
“‘abc”  ‘abc’ (Son lo mismo.)
En caso de conflicto se usan ambas.
‘matt’s”
Se usan comillas triples para multiples parrafos o para incluir comillas y
apostrofes:

11 31N

“““aﬂb C

£ 9



Espacio en Blanco

El espacio en blanco tiene significado en Python:

En especial |a indentacion y los saltos de linea.
Utiliza un salto de linea para terminar una linea de codigo.
Se utiliza un \ para que el salto de linea no se considere.

No se usan llaves { } para marcar los bloques.

Se utiliza indentacion consistente para esto.

El primer renglon con mas indentacion inicia el blogue.
El primer renglon con menos indentacion termina el bloque.

# String concat.




Comentarios

Inician con # el resto de la linea se ignora.

Puede incluirse una “cadena de documentacion’ en la
primera linea de una funcion o clase.

Esta documentacion se usa por el ambiente de desarrollo,
depuradores y otras herramientas.

Se considera de buen gusto incluir esta documentacion.

(x, y):
El docstring. Esta funciédn
es bien importante ya que blah blah blah.”””
# Comentario aqui...

111111




Asignacion - Atado

El atado (binding) de una variable significa que se

asigna a un nombre (una referencia) a cierto objeto
La asignacion crea referencias, no copias.

Los nombres en Python no tienen un tipo propio.
Los objetos si.

Python determina el tipo de la referencia de forma automatica,
dependiendo del tipo de objeto que se asigne.

Creas el nombre la primera vez que aparece a la
izquierda de una expresion.

tipo? no cipo? int



Asighacion - Atado

Si tratas de utilizar un nombre antes de que sea creado, saldra
un error:

>>> x = 3
3
>>> vy

Traceback (most recent call last):
File "<pyshell#l6>", line 1, in -toplevel-
Y
NameError: name 'yv' is not defined
>>> vy = 3
>>> y
3



Nombres validos

Python distingue entre minusculas y mayusculas.
Los nombres no pueden empezar con numero.

Pueden contener letras, numeros y subguiones ().
bob Bob bob 2 bob bob 2 BoB

Palabras reservadas:



Modo Interactivo

En , la ultima expresion impresa se asigha a
la variable .

Esto significa que, cuando se usa Python como calculadora,
se facilita continuar los calculos, por ejemplo:

>>> jva = 12.5 / 100
>>> precio = 100.50
>>> precio * 1iva
12.5625

>>> precio +
113.0625

>>> round( , 2)

113.06
>>>



Funciones en Python

http:/images4.alphacoders.com/771/77116.jpg



http://images4.alphacoders.com/771/77116.jpg

Como definir funciones

N

Nombre de [a funcion Argumentos

j Vos puntos

get optimo(filename, path):

“Cadena de Documentacidn’
lineal
linea2

Regresa el control al eddigo
que llamo la funcion

Este nivel de indentacion esta
dentro del bloque de la funcion

mejor

La funcion termina al encontrarse otra linea
con nivel de indentacion menor o fin de archivo

No se indica tipo que regresa, wi tipo de argumentos

CIS 391 Infroduction to Artificial Intelligence Fall 2008 (Slides)



Llamando a las funciones

La sintaxis para llamar una funcion es:

>>> producto (x, y):
X * vy

>>> producto (3, 4)
12

Los parametros en Python se llaman “Call By-Sharing”

Los parametros son referencias a las variables enviadas.

e Si la variable enviada es inmutable, se llama “por valor”

e Si la variable enviada es mutable se llama “por referencia’

e Si a la variable se le asigna otra referencia, por ejemplo a nueva lista,
la referencia original no se pierde, funciona como llamado “por valor”

CIS 391 Infroduction to Artificial Intelligence Fall 2008 (Slides)  htip:/www.python-course.eu/passing_arquments.php



http://www.python-course.eu/passing_arguments.php

Pase de Parametros

>>> def foo(x):
x.append(2)
x = [1,2]

>>>r =[1,2]

>>> foo(r)

>>> r
[3, 3, 2]



Parametros *

Las funciones pueden recibir un numero arbitrario de argumentos

>>> print args(*args):
args
>>> print args(3, 4, 10, )

(3, 4, 10, ‘hey’)
Como vemos los argumentos se reciben en tuplas.

Si se requiere, se pueden indicar argumentos posicionales.
Deben preceder a los parametros arbitrarios.

>>> print args (posl,pos2, *args):
posl, pos2, args



* en el llamado de funciones

Al llamar funciones, indicamos con un asterisco que la
secuencia son parametros enviados por posicion.

>>> print args(a,b,c):
(a,b,c)

>>> print args (3, 4, 10)
(3, 4, 10)

>>> a = (3, 4, 10)

>>> print args(*a)
(3, 4, 10)



Parametros por nombre arbitrarios »**

El mecanismo para recibir un numero arbitrario de parametros
con nhombre utiliza ahora doble asterisco.

>>> print args (**kwargs) :
(kwargs)

>>> print args(a=3, b=4, c=10)
{\al= , \bl=4’ \cl=10}

Al igual que con los parametros por posicion, también se
puede usar ** al llamar la funcion, pasando ahora un
diccionario.



Funciones sin return

Todas las funciones en Python tienen un valor de
regreso.

incluso si no hay una linea con return dentro de ellas.

Estas funciones regresan un valor None

None es una constante especial del lenguaje.
) None es similar a NULL, void, o nil en otros lenguajes.
b~ /Vone es también equivalente a Falso.

. El interprete no imprime None.

http:/howme.alphalink.com.av/ roglen/lazerbeam.JPG



http://home.alphalink.com.au/~roglen/lazerbeam.JPG

¢Sobrecargado de Funciones? No

No hay sobrecargado de funciones en Python.

Dos funciones no pueden tener el mismo nombre, incluso si
tienen diferentes argumentos.



Las funciones son ciudadanos de 1ra. clase

Las funciones pueden ser usadas como cualquier otro objeto.

Pueden ser:
Argumentos de funciones
Valores de regreso de funciones
Asignadas a variables
Elementos en tuplas, listas, etc.

>>> myfun (x) :
x*3
>>> applier (g, x):
q(x)

>>> applier (myfun, 7)
21

CIS 391 Introduction to Artificial Intelligence Fall 2008 (Slides)



Funciones “de Fabrica

El interprete de Python incluye varias funciones “incluidas de
fabrica” las cuales estan siempre disponibles:

abs()

all()

anvi()
basestring()
bin()

bool ()
bytearray()
callable()
chr()
classmethod()
cmp()
compile()
complex()
delattr()
dict()

dair()

divmod()
enumerate()
eval()
exectile()
file()
filter()
float()
format()
frozenset()
getatetr()
globals()
hasateri()
hashi()
help()
hex()

1d()

Built-in Functions

input()
int()
isinstance()
ilssubclass()
iter()

len()

list()
locals()
long()

map()

max()
memoryview()
mini()

next()
object()

oCt ()

http:/docs.python.org/2/library/functions.hiwl

open()
ord()

pow ()
print()
property()
range()
raw input()
reduce()
reload()
repr()
reversed()
round()
set()
setattr()
slice()

sorted()

staticmethod()
Str()

sum()
super()
tuple()
type()
unichr()
unicode()
vars()
xrange()
zip()
import ()

apply()
buffer()
coerce()

intern()


http://docs.python.org/2/library/functions.html

\ 'SL L
—"l }

% c‘l")",”l!ll, .'ll' " -'l

Objetos Tipo Coleccion

Python utiliza varios tipos de datos compuestos, que
se utilizan para agrupar otros valores.

http:/%.bp.blogspot.com/~xQ20bqFWBuk/TpThoUPIBKI/AAAAAAAANTC/MEXIVVLrqWO0/s1 600/New+York+Comic-Con+2011+Exclusive+Star+Wars+lnspired+The+Jellatic+EmpirerStormtrooper+Jelly*Bots+Print+by*The+Jelly+Empire.jpg



http://3.bp.blogspot.com/-xQ2ObqFWBuk/Tp5hoUP9BKI/AAAAAAAANtc/mEx9vVLrqW0/s1600/New+York+Comic-Con+2011+Exclusive+Star+Wars+Inspired+The+Jellatic+Empire+Stormtrooper+Jelly+Bots+Print+by+The+Jelly+Empire.jpg

Objetos tipo Secuencia

Tuplas, Listas, Cadenas

http:/2.bp.blogspot.com/796R3bXeqbl/TxXIKYYbJHI/AAAAAAAAASY/azvh9BdmeY4/s320/boogieZ.jpg



http://2.bp.blogspot.com/-756R3bXcgGI/TxXIkYYbJHI/AAAAAAAAASY/azvh5BdmeY4/s320/boogie3.jpg

Objetos Tipo Secuencia

Tupla
Una secuencia ordenada e inmutable de elementos.
Los elementos pueden ser de diferentes tipos, incluyendo otras
colecciones.

Cadenas (Strings)
Inmutables
Conceptualmente iguales a las Tuplas.

Listas
Una secuencia mutable de elementos de diferentes tipos.



Las secuencias usan una sintaxis
similar

Los tres tipos de secuencias
comparten la misma funcionalidad y sintaxis.

Diferencia Clave:
Tuplas y cadenas son inmutables.
Las listas son mutables.

Las operaciones que veremos a continuacion,
son aplicables a todas las colecciones tipo
secuencia.



Colecciones tipo secuencia

e Las tuplas se definen como una lista de valores (elementos)
separados por comas, entre parentesis .

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

e | as listas igual, solo que entre corchetes.
>>> 11 = [“abc”, 34, 4.34, 23]

e Las cadenas se escriben entre comillas (“, *, “““).
>>> st = "Hello World’

>>> st = ‘Hello World’

11111

>>> gt = FFsta es una multi-linea

NN

que utiliza triple comillas dobles.



Notacion tipo arreglo

e Podemos acceder a los elementos individuales de una tupla,
lista o cadenas utilizando la notacion de corchetes con
Indices. Como los arreglos clasicos de C#, Java, C.

>>> tu = (23, ‘abc’, 4.56, (2,3), 'def)

>>> tul[l] # Segundo elemento de la tupla.
‘abc’

>>> 11 = [“abc’, 34, 4.34, 23]

>>> 1i[1] # Segundo elemento de la lista.
34

>>> st = "“Hello World’
>>> st [1] # Segundo elemento de la cadena.

€ )



Indices positivos y negativos

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Indice positivo: se cuenta de izquierda a derecha empezando en 0.
>>> t[1]

‘abc’

Indice negativo: se cuenta de derecha a izquierda, iniciando en —1.
>>> £t [-3]
4.56



Cortes (Slicing)

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Regresa una copia del contenedor con un subconjunto de los
miembros originales. Empieza a copiar desde el primer indice y
se detiene antes del segundo.

>>> t[1:4]
(‘fabc’, 4.56, (2,3))

También se pueden usar indices negativos.

>>> t[l:-1]
(‘abc’, 4.56, (2,3))

0H1Ozlsa4
4 -3 -2 -




Copiando toda la secuencia

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Para regresar una copia de toda la secuencia, puedes usar [ :].
>>> t[:]
(23, ‘abc’, 4.56, (2,3), 'def’)

La diferencia entre estas dos lineas es muy importante:

listl # Los nombres hacen referencia a la misma lista
# Si1 cambiamos una se cambian ambas

>>> ]ist?

>>> 1ist?2 listl[:] # Dos copias diferentes, dos referencias



El operador ‘in’

Una prueba booleana para ver si un elemento esta en la secuencia:

>>> t = (1, 2, 4, 5)
>>> 3 t

F'alse
>>> 4 T

True
>>> 4 T

F'alse

En las cadenas, prueba si una subcadena esta en la secuencia

>>> a = 'abcde'
>>> 'l a
True

>>> 'cd' a
True

>>> 'ac¢' a

F'alse



El operador +

El operador + produce una nueva tupla, lista o cadena cuyos
valores son la concatenacion de los argumentos.

>>> (1, 2, 3) + (4, 5, 0)
(1, 2, 3, 4, 5, 0)

>>> [1, 2, 3] + [4, 5, 6]
(1, 2, 3, 4, 5, 0]

14 7

>>> “Hello” + + "World’

'‘Hello World’



El operador *

El operador * produce una nueva tupla, lista o cadena cuyos
valores son la repeticion de los argumentos.

>>> (1, 2, 3) * 3
(:I-I 2/ 3/ :I-I 2/ 3/ 1/ 2/ 3)

>>> [1, 2, 3] * 3

>>> “Hello  * 3
‘HelloHelloHello’



Mutabilidad
Tuplas vs Listas

hitp://blogs.perv21.pe/comics21/post02-xmen02.jpg



http://blogs.peru21.pe/comics21/post02-xmen03.jpg

Listas: Mutables

>>> 11 = [‘abc’, 23, 4.34, 23]
>>> J11[1] = 45
>>> 11

[‘abc’, 45, 4.34, 23]

- Podemos modificar la lista in place.

* El nombre /i sigue apuntando a la misma direccion de memoria,
despueés de la actualizacion.



Tuplas: Inmutables

>>> t
>>> t[2] = 3.14

(23, ‘abc’, 4.56, (2,3), 'def’)

Traceback (most recent call last) :
File "<pyshell#75>", line 1, in -toplevel-
tul2] = 3.14
TypeError: object doesn't support item assignment

No puedes cambiar una tupla.

Se puede crear una nueva tupla y asignar la nueva referencia al
nombre original.

>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

Gracias a esto las tuplas son mas eficientes que las listas.




Operaciones solo para Listas (1)

>>> 11 = [1, 11, 3, 4, 5]

append( )
>>> 11i.append('a’) # Se utiliza un método de la lista
>>> 11

(1, 11, 3, 4, b5, ‘a’]
insert( )
>>> 1i.insert (2, ‘i’)

>>>11
(1, 11, ‘i°, 3, 4, 5, ‘a’l



Operaciones solo para Listas (2)

extend()

El operador + crea una nueva lista (con una nueva referencia)
extend altera la lista 1i in place.

>>> 1i.extend([9, 8, 71)
>>>11

I::I-I 2/ ‘j—,l 3/ 4/ 5/ ‘a,l 9/ 8/ 7]

extend recibe una lista.
append recibe un solo elemento.

>>> li.append ([10, 11, 12])
>>> 11

I::I-I 2/ ‘j—,l 3/ 4/ 5/ ‘a,l 9/ 8’ 7’ [10, 11/ 12]]



Operaciones solo para Listas (3)

>>> 1i = [‘a’, ‘b, ‘¢, D]

index()

>>> 1i.index (‘b)) # indice de primera ocurrencia’
1

*existen otras formas

count()

>>> 11i.count (‘b)) # numero de ocurrencias
2

remove()

>>> 1i.remove (b)) # remueve la primera ocurrencia
>>> 17

I:‘a,, ‘C!’ ib,:l



Listas

>>> 11 = [5, 2, 6, 8]
reverse()
>>> 1l1.reverse () # ordena en reversa la lista *in place*
>>> 17
[8, o6, 2, O]
sort()
>>> 1i.sort () # ordena la lista *in place*
>>> 17
[ 2 14 5 ’ 6 14 8 ]

>>> li.sort (alguna funcion)
# se ordena utilizando la funcidn recibida




Listas y Tuplas

Las listas son mas lentas pero poderosas que las tuplas.
Las listas se pueden modificar y permiten mas operaciones.
Las tuplas son mas rapidas pero son inmutables.

Para convertir entre ellas utiliza las funciones list() y tuple():
1i list (tu)
tu tuple (1l1)



Zip Y map

>>> lista = ['1','2','3"]
>>> lista2 = ['Ana', 'Tom', 'Zoe']

>>> list(zip(lista,lista2))
[("1l", '"Ana'), ('2', 'Tom"), ('3"', 'Zoe')]

>>> map (int,lista)
[1, 2, 3]



DEI%OCRAL[A CL o g1
G%Wa‘iii;sc"bio.y KL

| loridad ) Gobig

Una coleccion de
asociaciones:

Los Diccionarios



http://celestacha.blogspot.mx/2011/01/quino-con-sentido-democratico.html

Los diccionarios contienen un conjunto desordenado de
parejas clave:valor.

Las claves pueden ser cualquier tipo de dato inmutable.
Los valores pueden ser de cualquier tipo.

Un diccionario puede almacenar diferentes tipos de datos.




Tu petdes:

definir
modificar
ver
recuperar
borrar

0S pares clave-valor
emel diccionario

hitp://el.ilyimg.com/espanol.docsyahoo.com/images/ent/comics/condorito_mainl $0.qif




Detinir y recuperar en diccionarios

>>> d = {‘usuario’: ‘bozo’, ‘pswd’ :1234}
>>> d[ ‘usuario’ ]
‘bozo’
>>> d[ ‘pswd’ ]
1234
>>> d[ ‘bozo’ ]
Traceback (innermost last):
File ‘<interactive input>’ line 1, in ?

KeyError: bozo

CIS 291 Introduction to Artificial Intelligence Fall 2008 (Slides)



>>> tel = {' : 4098, : 4139}

>>> tel] ] = 4127

>>> tel

{ : 4139, 'guido': 4127, : }
>>> tel] ]

>>> del tel[ 'sape']

>>> tel] ] = 4127

>>> tel

{ : 4127, : 4127, 'jJack': 4098}
>>> tel.keys ()

[ y 1lrv’, ]

>>> tel.has key( )

True

http:/pyspanishdoc.sourceforge.net/tut/nodeZhtml#SECTION007500000000000000000

http:/wwwitucoo.com/vector/b_snake/images/snake00 1.png



http://www.tucoo.com/vector/b_snake/images/snake001.png
http://pyspanishdoc.sourceforge.net/tut/node7.html#SECTION007500000000000000000

Actualizando Diccionarios

>>> d = {‘user’:‘bozo’, ‘pswd’ :1234}

>>> d[‘user’] = ‘clown’
>>> d
{‘user’:‘clown’, ‘pswd’:1234}

Las claves deben de ser unicas.
Al asignar a una clave existente, remplaza el valor.

>>> d[‘id’]
>>> d
{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

45

http:/upload.wikimedia.org/wikipedia/commons/thumb/9/58/Hash_table_ 4 1 1 0_0_1_0_Ll.sva/300px-Hash_table 4 1 1 _0_0_1_0_LL.svg.png


http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg/300px-Hash_table_4_1_1_0_0_1_0_LL.svg.png

Hashing en Diccionarios

Los diccionarios no tienen orden. i
hashing
Esto es por que se

implementan utilizando hashing hash
keys function hashes

: 00
John Smith ~_

.

01
Lisa Smith /

/ 04

Sam Doe ﬁ/—’
05
/ '

Sandra Dee

http:/upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash table 4 1 1 0 0 1 0 LL.sva/200px-Hash table 4 1 1 0 0 1 0 LL.svg.pn



http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg/300px-Hash_table_4_1_1_0_0_1_0_LL.svg.png

Removiendo elementos de los
diccionarios

>>> d = {‘user’:'bozo’, ‘p’':1234, ‘i’:34}

del

>>> d[‘user’]
>>> d
{‘p’:1234, ‘i’:34)

clear()

>>> d.clear ()
>>> d

{}

>>> a=[1,2]
>>> al[l]
>>> a

[1]

# Remueve un par clave-valor.

# Remueve todos los pares.

# (del también se usa en listas)



Meétodos utiles para acceder a
diccionarios

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

keys()

>>> d.keys () # Lista de claves
[Guser!, Ep,’ Ei!]

values()

>>> d.values () # Lista de wvalores.

[‘bozo’, 1234, 34]

items()
>>> d.items () # Diccionario como una lista de tuplas.

[ (‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

in
>>> if 'z' in dict: print dict['z'] # No Key Error



Expresiones Logicas

http:/wwwyirginmedia.com/images/spock.jpg



http://www.virginmedia.com/images/spock.jpg

True y False

Truey False son constantes en Python.

Otros valores equivalentes a True o False:
False: cero, None, contenedores u objetos vacios.
True: numeros distintos a cero, objetos no vacios.

Operadores de comparacion: ==, I=, <, <=, etc.
X VY Y tienen el mismo valor: ==
Si comparas X Y:
Xy Y son dos variables que hacen referencia al mismo objeto.

Se pueden combinar expresiones booleanas.
Utilizando and, or y not.
Para evitar ambiguedad se necesitan parentesis.



Propiedades de and y or

Realmente and y or no regresan True o False.

Lo que regresan es el valor de una de sus sub-expresiones
(el cual podria no ser booleano).

X Y /

Si todas son verdaderas, regresa el valor de Z.
De otro modo, regresa el valor de |la primera expresion falsa.
X Y /

Si todas son falsas, regresa el valor de la expresion Z.
De otro modo, regresa el valor de |la primera expresion verdadera.

and y or utilizan evaluacion /azy, asi que no se siguen

evaluando las siguientes sub-expresiones, al resolver la
expresion logica.

tip://smurts.wikia.com/wiki/Lazy_Swurf



http://smurfs.wikia.com/wiki/Lazy_Smurf

Expresiones condicionales

x = valor verdadero valor falso

Utiliza también evaluacion Lazy:

Primero, se evalua
Si regresa True, valor verdadero se evalua y regresa.
Si regresa False, valor falso se evalua y regresa.



Control de Flujo




Condiciones if

X ==
“x vale 3.”

X ==
“x vale 2.7

“x vale otra cosa.’”
“Esto ya esta fuera del ‘if’.”

Fijate:
El uso de bloques indentados.
Dos puntos () de la expresion booleana.



Ciclos while

>>> x = 3
>>> x < 5:
X, "dentro del loop"
x =x+1
3 dentro del loop
4 dentro del loop
>>> X = 6
>>2> x < 5:
X, "dentro del loop"

>>>



break y continue

Puedes utilizar la palabra reservada
break para salir del ciclo while

completamente.

Puedes utilizar la palabra reservada
continue dentro de un ciclo, para
detener el procesamiento de la iteracion
actual para ir inmediatamente a la

siguiente.



ciclos for

Un ciclo for recorre cada uno de los elementos
de una coleccion, o cualquier objeto “iterable”

for <elemento> in <coleccidn>:
<sentencias>

Si <coleccion> es una lista o tupla, el for recorre
cada elemento de la coleccion.

Si <coleccion> es una cadena, entonces el
ciclo recorre cada caracter de la cadena.

for caracter in ‘“Hello World”:
print caracter



ciclos for

for <elemento> in <coleccidén>:
<sentencias>

<elemento> puede ser complejo.

Cuando los elementos de una <coleccion> son a su
vez secuencias,entonces <elemento> puede ser una
“plantilla” de la estructura de los elementos.

Esto facilita el acceso a los elementos internos.

for (x, y) in [(a,1), (b,2), (c,3), (d,4)]:
print x



La funcion range()

Normalmente queremos iterar sobre una secuencia de enteros
que inician en cero.

La funcion range() toma un entero como parametro y regresa
una lista de numeros del cero a uno antes del numero que
recibio.

range(5) regresa [0,1,2,3,4]

Para imprimir los nuUmeros uno a uno:

for x in range(5):
print x

Equivalente al clasico:
for(int 1=0; 1<=5; 1++4)



Diccionarios y for

>>> edades = { “Sam " :4, "Mary " :3, "Bill " :2 }
>>> edades
{'Bill': 2, '‘Mary": 3, 'Sam’: 4}
>>> nombre in edades.keys():
nombre, edades[nombre]

Bill 2
Mary 3
Sam 4

>>> for key in sorted(edades.keys()):
print key, edades|[key]

>>> for key in edades:
print key, edades|[key]




Generacion de
Listas por
Comprension

L
) 4
3
4 "
s \ |




Listas por comprension

Una caracteristica poderosa del lenguaje.

Generas una nueva lista aplicando una funcion a cada
elemento de la lista original.

[ expresion for nombre in lista ]

La expresion es alguna operacion sobre nombre.

Cada elemento de la lista, se asignaa nombre. y se
calcula el nuevo elemento utilizando la expresion.

Los elementos resultantes se van colectando en una

nueva lista la cual se regresa como resultado de
comprension.

>> 1i = [3, 6, 2, 7]
>>> [elem*2 for elem in 1li]
[6, 12, 4, 14]




Listas por comprension

[ expresion for nombre in lista ]

Si la lista contiene elementos de distintos tipos,

entonces la expresion debe ser capaz de operar
correctamente con todos los elementos de la lista.

Si los elementos de la lista son a su vez
contenedores, entonces el nombre puede consistir
de patrones de nombres que “empaten” con los
elementos de la lista.

>>> 1i = [(‘a’, 1), (b’, 2), (¢, 7)1
>>> [ n * 3 for (x, n) in 1i]
[3, 6, 21]




Listas por comprension

[ expresion for nombre in lista ]

La expresion puede contener funciones.

>>> def subtract(a, b):
return a - b

>>> oplist = [(6, 3), (1, 7), (5, 5)]
>>> [subtract(y, x) for (x, y) in oplist]
[_3/ 6/ O]




Listas por comprension: Filtros

[ expresion for nombre in lista 1 £ filtro ]

La expresion booleana filtro determina si el
elemento se evaluara o no por la

expresion.

Si filtro es False entonces el elemento se
omite de la lista antes de que se evalue la
comprension.



Con filtros y anidadas

[ expresion for nombre in lista 1 £ filtro ]

>>> 11 = [3, 6, 2, 7, 1, 9]
>>> [elem * 2 for elem in 1li i1if elem > 4]
[12, 14, 18]

Como la operacion toma una lista como entrada y
produce una lista como salida, éstas se pueden
anidar facilmente:

>>> 11 = [3, 2, 4, 1]
>>> [elem*2 for elem in

[1tem+]l for item in 11i] ]
[8, 6, 10, 4]




L F 1T 5. F ST BT B L RN N
el O B R SR L L R A TS T
D B S TL el wE N AT A
el el el A I S R L TR E
MUYl (T B g Wit FAPA PN
R F I RS Y LR BN N . L
TE.E R B . FLYF T " T ¥ ST
’ SRS T T " .1
ek YT MR TN
Aot Rl P e ATt s o A7 2 4
e
has A oS F L L AR PSR T AL L L,
. k2 AR a3 L ot okl ol
R B R N
A2 A AR EFITY S o™ 2 82 1Tan
R R N L N A N B
ME A A Ay Y e
. . » R B
- » T ol A A T N . A at B
R i SR SR e i B R S K AR
n?.ﬁf’\:o..\o¢~ . rrhdens
s L Rl b R S Rt P o R e ]
L S B S L I N R Y L IR R

- .

e P A~ R R A K al

o A S P e e S e e B
B Ak i o . SR N T ok I
el e T . P " T

. - ‘).O‘J"v.

el B o B B B E R E F B N TN S
-ew . - v e
"I LA E el B Tal o Tal Dot oL
= & oA B A T T e,
SV Pt USSP Dans
e rlal bt o o N R
R R N R O B B R T L LY
Ll i B R L IR b L B A S -~ et
ER AN AT A T VY e
. F . FY T T T T T.TTI>OT
e F NP S Tl N
»™aea PPN Rs g
RN Rl ks T A . T LY
MWL IYT S T AP e
el e Al T O N
S I B S N R
R e e S S Y T . L T Y
FE P L TrT rT YT
i Rl S B R U Bl B
E N VAYA A VR s v v e nY
- » W O W L N ™ AR S
e Fal oA FEE R T R N T " T .2 T
AR Rl B R ol B L e B
™~ - AN ES Bt ™S Pum P
DA PN NYANENM AT AT A
it B S R T P ad 2 L L
I B S LR R N L e
MEMBPW AN A S v By
s S R S R S P A P S A ]
S O L B B A B N O BT AT L F NF .Y .

Como leer archivos
y algunas otras funciones Built-In

LR BN R TS _ .
EMAEATITN AT S E
MW AT AL BB rssowropmarenase
e B T A R T T R T
et F Al BT el ol ol B
R R TR LR L B o L el B L R R
™ e . ST L e tven
Ll U SR O B N B B e ch BN
el A I T T R TR ETTY
e bl R BT AN RN R
LA B PR F 0 B . ' P AL ET AT )
W AN e aga MM E BN B
BEE AN EDYTS PN e
- el o T s, T T T T
VRE RN R PrYEY TYITTRYIUY T B T
L T IR N I L N R S e
el A R e T LI R T .Y
Al N L E. L S A AT

W ie B LN vl s dYs Ny Y S b

http:/wwwwallsave.com/wallpapers/1920x1 080/counter-strike-hd-pe/2399692/counter-strike-hd-pe-jueqos-general-imagen-matrix-by-andre-w-jpg-2299692.jpq


http://www.wallsave.com/wallpapers/1920x1080/counter-strike-hd-pc/3399692/counter-strike-hd-pc-juegos-general-imagen-matrix-by-andre-w-jpg-3399692.jpg

Como leer archivos de texto

archivo = open( ‘'nombre de archivo’,6’'rU’)
una cadena = archivo.read()

line archivo:
line
archivo.close ()




‘ MaN ARVEL COMICS GROUP
U- THE INVINCIBLE

- \RON mw

Operaciones
con
Cadenas




Operaciones con cadenas

La clase string tiene varios métodos que son muy
utiles para dar formato a las cadenas de texto.

>>> “hello” .upper ()
‘HELLO’

En la documentacion podras encontrar muchas mas.

Nota: usa <string>.strip () para eliminar los
saltos de linea de los archivos de texto.



Operador % para formato de cadenas

El operador % te permite construir cadenas a partir de
diferentes tipos de datos a manera de “llena lo espacios”.

Por ejemplo podemos indicar cuantos decimales pueden imprimirse.

Muy parecido al comando sprintf de C.

>>> x = “abc”

>>>y =34

>>> “%%s xyz %d” % (X, y)
‘abc xyz 34’

La tupla después del operador % se utiliza para llenar los
espacios marcados por %s y %d.

Debes revisar la documentacion para ver otros codigos de
formato.



Imprimiendo cadenas

Puedes imprimir una cadena a la pantalla utilizando print.

>>> “%s xyz %$d” % (“abc”, 34)
abc xyz 34

print automaticamente anade una nueva linea al final de la
cadena.

Si incluyes una lista de objetos, los concatenara con un espacio
entre ellos.

>>> “abe” >>> “abe”, “def”
abc abc def

Tip util:
>>> “abe”,

No anade una nueva linea, solo agrega un espacio.



De cadena a lista a cadena

join pasa una lista de cadenas a una sola cadena.
<cadena_separadora>.join( <lista> )

>>> “;”.jOin( [“abC”, “def”, “ghi!!] )

split convierte una cadena a una lista de cadenas.
.split( <cadena_separadora> )
>>> .split( “;7 )
[“abC”, “def”, “ghi!!]

Fijate en el cambio de responsable de la operacion



split, join y listas por comprension

split y join se utilizan a veces en conjunto con
comprension de listas :

>>> " " join( [s.capitalize() s in "this is a test ".split( " " )])
'This Is A Test"

>>> # Por partes:
>>> llthis is a test" .split(ll ] )

>>> [s.capitalize() for s in "this is a test"” .split(" " )]
['This', 'Is', 'A’, 'Test']
>>>



str()

La funcion built-in str() puede convertir

cualquier tipo de dato a una cadena.
Puedes definir como sera este comportamiento
para los tipos de datos definidos por el usuario,
o redefinir el de muchos tipos.

>>> “Hello ” + str(2)
“Hello 2”



INEERING RE PGNSE

COOL. U%G-R

o -
- o NN ' f .
" N .\- S ',;‘ :\:. \ N - ‘l
R N R |
NN - RN - NNt L S
S Sl AN NN S S L - i l
e 2. R e e N ' nJiv.
TRIENTLINES Tt
.\' - \, N - N , ‘\~ - .V - ‘.-'
- S N N :
ShNh N RN NN NN NN . » .
N \MP$ NN SRS SN N
. NN, N . Sl ";__. -‘-\.
. . N
. 0\~

YOURE FL‘r’ra'}l \ X
M‘“ Wi s |

Otras monerias

hitp:/imgs.xked.com/comics/python.png hitp:/www.phdcomics.com/



http://imgs.xkcd.com/comics/python.png
http://www.phdcomics.com

Notacion Lambda

Pueden definirse funciones anonimas.
Esto se usa cuando queremos pasar una funcion
sencilla como argumento a otra funcion..

>>> applier ( z: z * 4, 7)
28
El primer argumenro a nuestra funcion applier() es una
funcion anonima que regresa la entrada multiplicada
por cuatro.

Nota: Al utilizar la notacion lambda solamente podemos
hacer funciones de una expresion.



Valores por defecto para argumentos

Puedes especificar valores por defecto, es decir
valores que se tomaran en caso de que no se envien
al llamar la funcion.

Al incluir valores por defecto, los argumentos se
hace opcionales.

>>> myfun (b, c¢=3, d="hello”):
b + c

>>> myfun (5,3, hello”)

>>> myfun (5, 3)

>>> myfun (5)

Todas las funciones anteriores regresan 8.



Cuidado con Valores por defecto

Los valores por defecto se inicializan una sola vez.
Por ejemplo:

def f(a, L=[]):
L.append(a)
return L

print £(1)
print £(2)
print £(3)

Imprimiria: Podemos corregirlo asi:
513 21 def f(a, L=None):
1, 2, 3] 1f L is None:
L =[]
L.append(a)
return L




http://cablemodem.fibertel.com.ar/kenshyura/taringa/n6ul?r.jpg



http://cablemodem.fibertel.com.ar/kenshyura/taringa/n6ul3r.jpg

import y modulos

Sirve para utilizar clases y funciones definidas en otros archivos.

Un modulo en Python es un archivo del mismo nombre con
extension .py.

Como en Java import, C# using y en C++ include.

Tres maneras de utilizar el comando:
algun archivo
algun archivo *
algun archivo className

¢.,Cual es la diferencia?
Que se importa del archivo y que nombre tienen las referencias

despues de ser importadas.




import

algun archivo

Todo lo que se encuentra en archivo.py es importado.
Para referirse a los elementos importados se debe agregar el
nombre del modulo antes del nombre;

algun archivo.className.method (“abc”)
algun archivo.myFunction (34)

archivo *

También se importa todo, pero ahora no es necesario agregar el

nombre del modulo antes ya que todo se importo al espacio de

nombres actual.
className.method (“abc”)

myFunction (34)

iCuidado! Esto puede redefinir funciones o clases que
se llamen igual en tu programa y en el modulo.




import

algun archivo className
Solo el elemento className de algun_archivo.py es importado.
Después de importar className, se puede utilizar sin necesidad de
agregar el prefijo del modulo, ya que se trajo al espacio de
nombres actual.

className.method (“abc”) #Esto se importo
myFunction (34) #Esta funcidon no

Podemos importar la funcion también:

algun archivo className, myFunction



Ejecutando modulos como scripts

# Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=20,1
while b < n:
print b,
a, b =Db, atb

def fib2(n): # return Fibonacci series up to n

result = [] Agregando:
a, b=20,1 £ I , .
while b < n: 1f name == "~ main_ ":
result.append(b) _ i
a, b = Db, atb Al final de un modulo, nos
return result permite usarlo también como
script.
if name == " main ":
import sys o
fib(int(sys.argv[1])) El codigo en el bloque se
ejecutara, cuando el modulo
> python fibo.py <arguments> se llame desde la linea de
comandos.

Nota el import sys




Rutas de busqueda de modulos

Cuando importamos un modulo por ejemplo , el interprete
Inicia una busqueda:

Primero busca si hay un built-in con ese nombre.

Si no se encuentra busca un archivo llamado en una lista
de directorios dada por la variable sys.path.

sys.path se inicializa desde con estas localidades:

e El directorio que contiene el script de entrada (el directorio actual).
e | a variable de entorno PYTHONPATH (una lista de directorios,
utiliza la misma sintaxis que la variable PATH).

e Despues de la inicializacion, los programas de Python pueden
modificar |la variable sys.path.

El directorio actual es insertado al principio de las rutas, adelante de
la ruta de librerias estandar.




Meétodo dir()

>> import fibo, sys
>>> dir(£fibo)

[' name ', 'fib', 'fib2']

>>> dir(sys)

[' displayhook ', ' doc ', ' excepthook ', ' name ', ' stderr ',
' stdin ', ' stdout ', ' getframe', 'api version', 'argv',

'builtin module names', 'byteorder', 'callstats', 'copyright',
'displayhook’', 'exc clear', 'exc info', 'exc type', 'excepthook',

'exec _prefix', 'executable', 'exit', 'getdefaultencoding', 'getdlopenflags',
'getrecursionlimit’', 'getrefcount', 'hexversion', 'maxint', 'maxunicode’,
'meta path', 'modules', 'path', 'path hooks', 'path importer cache’',
'platform’', 'prefix', 'psl', 'ps2', 'setcheckinterval', 'setdlopenflags',
'setprofile’, 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout',
'version', 'version info', 'warnoptions']

La funcidn built-in dir() nos da una lista de los nombres definidos en
un modulo.



= “THE WORLD SEEN BY AN "OBTECT-ORENTED PROGRAMMER.
OH MWY. 1’VE
DONE iT AGAIN,
HAVEN'T T 7

Enterbanment Provider S--alduu

Programacion
Orientada a Objetos

hﬂp://www.bonkersworld.ne’r/objec’r—worlg}



http://www.bonkersworld.net/object-world/

iISon todos objetos!

Todo en Python es realmente un objeto.

Hemos visto pistas de esto antes...
“hello” .upper ()
list3.append(‘a’)
dict2.keys ()

Estos se ven como llamadas a métodos en Java o C++.
Podemos definir facilmente nuevas clases de objetos, para
complementar a los built-in.

De hecho la programacion en Python, normalmente se
hace con el paradigma orientado a objetos.



Definiendo una Clase

Una clase (c/ass) es un tipo de dato especial que

define como construir cierto tipo de objetos.

class tambien almacena ciertos datos que se comparten por
todas las instancias de la clase.

Instancias son aquellos objetos que han sido creados siguiendo
la definicion especificada dentro de una clase en particular.

estudiante:

Representa a un estudiante.
- 1init (self,n,e):
self.nombre = n
self.edad = e
get edad(self):

self.edad

1¥111] J)3375



Definiendo una Clase

estudiante:

111111 J3I337)

Representa a un estudiante.
~ 1nit (self,n,e):
self .nombre = n
self.edad = e
get edad(self):
self .edad

Se definen los mefodos de una c/ase incluyendo
definiciones de funciones dentro del bloque de la

clase.
Los metodos para las instancias deben llevar un argumento
lamado self el cual esta atado a la instancia que ejecutara el
metodo.
El metodo constructor se llama  init



Instanciando objetos

No existe la palabra reservada new como en
otros lenguajes.

Se llama simplemente al nombre de la clase con
la notacion () y se asigna el resultado a un
nombre.

Si se pasan argumentos, estos se pasan al
metodo init

Aqui, el méetodo init () para la clase estudiante
recibe “Ana” y 21 y la nueva instancia se ata al nombre

b:

b = estudiante (“Ana”, 21)



self

El primer argumento de cada meétodo es una
referencia a la instancia que lo llama.

Por convencion el nombre del argumento es
self.

En_init |, self es una referencia al objeto

que esta siendo creado;

self es similar a la palabra reservada this en
Java o C++.



self

Cuando defines un metodo debes especificar el
argumento self explicitamente.

No asi cuando llamas al metodo.

Python lo pasa por ti automaticamente.

Al definir el método: Al llamar al método:

(este codigo esta dentro del
bloque de la clase.)

set edad(self, num): >>> x.set edad(23)
self.edad = num




Borrado de Instancias

Cuando termines de utilizar un objeto, no es

necesario que lo borres explicitamente.

Python recoleccion automatica de basura.

Python automaticamente detecta cuando las
referencias a un espacio de memoria han salido
del ambito y libera esa memoria.

Normalmente funciona muy bien, muy pocas fugas
de memoria.

No hay metodos destructores.



La clase estudiante

estudiante:

Representa a un estudiante.
~ 1nit (self,n,e):
self.nombre = n
self.edad = e
get edad(self):

self.edad

111111 33375



Sintaxis tradicional de acceso

>>> £ = estudiante (“Bob Smith”, 23)

>>> f.nombre # Access an attribute.
“Bob Smith”
>>> f.get edad() # Access a method.

23



Acceso a miembros desconocidos

Problema: En ocasiones el nombre de un atributo
no se conoce si ho hasta el tiempo de ejecucion.

Solucion: getattr (object instance, string)

object instance es lareferencia al objeto que
accederemos.

string es una cadena que contiene el nombre del método o
atributo de la instancia.

getattr (object instance, string) regresa una
referencia al método o atributo.



Acceso a miembros desconocidos

>>> f = estudiante (“Bob Smith”, 23)

>>> getattr(f, “nombre”)
“Bob Smith”

>>> getattr(f, “get edad”)
<method get age of class studentClass at 010B3C2>

>>> getattr (f, “get edad”) () # llamamos a la referencia.
23

>>> getattr (f, “get birthday”) # no existe el método



hasattr(object__instance,string)

>>> £ = estudiante (“Bob Smith”, 23)

>>> hasattr(f, “nombre”)
True

>>> hasattr(f, “get edad”)
True

>>> hasattr(f, “get birthday”)
False



Dos tipos de atributos

Las clases tiene meétodos y atributos; Los atributos son datos
con los que representamos las propiedades de los objetos.

Atributos tipo dato
Son variables que pertenecen a cierta instancia particular de la clase.
Cada instancia tiene su propio valor.
Son los atributos mas comunes.

Atributos de la clase
Pertenece a toda la clase.
Todas las instancias de la clase comparten el mismo valor.
Son las propiedades static en otros lenguajes.

Sirven para
constantes para todas las instancias.
contadores de cuantas instancias se han creado.



Atributos tipo dato

Los atributos tipo dato son creados e Inicializados por el
meétodo init ().
Los atributos se crean al asignarles referencias a los nombres.
Dentro de la clase los atributos tipo dato se refieren con self
por ejemplo, self.nombre
profesor:
“Representa a los profesores”
~ 1nit (self,n):
self .nombre = n
print nombre (self) :
self.nombre



Atributos de la clase

Como todas las instancias de la clase, comparten la misma

referencia:

cuando cualquier instancia cambia el valor, este cambia para fodas las

Instancias.

Los Atributos de la clase se definen:
dentro de la definicidon de la clase.

fuera de cualquier metodo.

Como solo hay uno de estos atributos por cada clase y no por
instancia, estos se accesan utilizando una notacion diferente:

Se accesa a los atributos de la clase de la siguiente manera:

self ._class .

name

sample:
x = 23

self ._class

increment (self) :

X 4=

1

>>> a = sample ()
>>> a.increment ()

>>> a ._class_ . X
24




Atributos de datos y de la clase

counter: >>> a = counter ()
overall total = 0 >>> b = counter ()
# class attribute >>> a.increment ()
__init (self): >>> b.increment ()
self.my total = 0 >>> b.increment ()
# data attribute >>> a.my total
increment (self) : 1
counter.overall total = \ >>> a. class .overall total
counter.overall total + 1 3
self .my total = \ >>> b.my total
self.my total + 1 2

>>> Db. class .overalL_total




Herencia

Una clase puede extender la defincion de otra clase.
Permite el uso o extension de metodos y atributos que ya han sido
definidos en la clase base.
Nueva clase : subclase. Original: padre, clase base o superclase

Para definir una subclase, se indica con paréentesis el

nombre de la superclase.
estudiante ia(estudiante):

Python permite herencia multiple.



Redefinicion de Meétodos

Para redefinir un metodo de la clase padre, solo se
incluye una nueva definicion en la subclase

utilizando el mismo nombre.
El codigo anterior no se ejecutara.

Para ejecutar el metodo de la clase padre junto con la
nueva definicion se debe llamar explicitamente la
version del padre.

clasePadre.metodoPadre (self, a, b, c)

En este caso si se debe agregar el argumento self
explicitamente.



Ejemplo Herencia

estudiante:
“Clase estudiante.”

~ 1nit (self,n,e):
self.nombre = n
self.edad = e

get edad(self):
self.edad

estudiante ia(estudiante):
“Estudiante de IA.”

~ init (self,n,e,esp):
#Se llama al init de la clase padre

estudiante. init (self, n,a)
self especialidad = esp

get edad(): #Se redefine el método completamente
“Age: 7 + str(self.edad)



Metodos y Atributos
Built-in




Meétodos Built-in de las clases

Las clases contienen muchos metodos y atributos que
estan incluidos por Python aunque uno no los haya

definido explicitamente.

La mayoria de estos metodos definen funcionalidad
automatica que se dispara por operadores especiales o €l
uso de la clase.

Los atributos built-in definen informacion que debe ser
almacenadad para todas las clases.

Todos los miembros built-in tienen subguiones dobles
encerrando a sus nombres por ejemplo:
init doc



Meétodos Built-in de las clases

Por ejemplo el metodo  repr existe para todas las
clases, y este puede ser redifinido.

Este método especifica como se convierte una instancia de
la clase a una cadena.

print £ llamariaa £. repr () para producir una cadena
que represente al objeto f.

Sitecleas £ en el prompt y presionas ENTER, esto llamaria
también al método  repr para determinar lo que se

mostraria al usuario. Si no se redefine seria el nombre de la
clase a la que pertenece f.



Meétodos Built-in de las clases: Ejemplo

student:

~ repr (self):
“I'm named ” + self.full name

>>> £ = student (“Bob Smith”, 23)

>>o> f
I’'m named Bob Smith
>>> £

“I’'m named Bob Smith”



Maeétodos Built-in de las clases

Mas ejemplos de metodos que se pueden redefinir:

__init _ : Constructor de la clase.

~cmp : Define como funciona == para la clase.
~_len  : Define como funciona len ( obj.
~_copy : Define como se copian las instancias.

Otros meétodos built-in te permiten utilizar la
notacion de corchetes [ ] como los arreglos o
paréentesis como () el lamado de una funcion .



Atributos Built-in

Estos atributos existen para todas las clases:
~_doc  :Variable que almacena la cadena de
documentacion de la clase.
__class . Variable que tiene una referenca a la

clase desde cualquier instancia de ella.
module . Variable que tiene una referencia al

modulo en el que se define determinada clase.

~dict .El diccionario que es realmente el
espacio de nombres para la clase (pero no sus
superclases).

Metodo built-in muy util en estos casos:
dir (x) regresa una lista de todos los metodos y

atributos definidos para el objeto x.



Atributos Built-in: Ejemplo

>>> f = student (“Bob Smith”, 23)

>>> £. doc

A class representing a student.

>>> fﬂ__class__
< class studentClass at 010B4C6 >

>>> g = £. class (“Tom Jones”, 34)



Datos privados

Todo atributo que tiene dos subguiones antes del nombre
(pero ninguno al final) se considera privado.

Nota:
Doble subguion al incio y al final esta reservado para meétodos
y atributos built-in de la clase.

Note:
No hay una especificacion ‘protected’ en Python; asi que las
subclases no podrian acceder a estos miembros tampoco.



Esta presentacion se basa en tres archivos disponibles en linea para
el curso: OIS 3291 Introduction to Artificial Intelligence Fall 2008 (Slides) de la
universidad de Penn State ya no estan en el URL original.

La documentacion oficial de python.org.

Google’s Python class:
http.//code.google.com/intl/es-419/edu/languages/google-python-class/index.html

Otros:
Distribucion de Python usada en clase:
http://www.enthought.com/
IDE:
http://www.]etbrains.com/pycharm/
La plantilla comic standard disponible gratuitamente en:
http://www.keynotezone.com/themes/comics/index.html
Imagenes de encontradas con Google, sus URLs estan en las paginas
individuales. La mayoria Creative Commons.

Correcciones y sugerencias a: mariosky@gmail.com
Disponible como archivo keynote para editar, en github.com/mariosky/
presentaciones



http://code.google.com/intl/es-419/edu/languages/google-python-class/index.html
http://www.jetbrains.com/pycharm/
http://www.keynotezone.com/themes/comics/index.html
mailto:mariosky@gmail.com
http://github.com/mariosky/presentaciones
http://github.com/mariosky/presentaciones

