
Introducción a las Aplicaciones
Web
Ansible

Ansible es una herramienta open source para configurar y
administrar una o muchas computadoras.

Gestión de la configuración: La información que describe el software y hardware
de una empresa.

● Control de versiones.
● Actualizaciones a los paquetes de software instalados.
● Direcciones de red de los dispositivos de hardware.
● Instalación y configuración de software y componentes.

Images by OpenClipart-Vectors from Pixabay

foo.example.com

bar.example.com
Controlador

SSH

SSH

[webservers]
foo.example.com
bar.example.com

Inventario

- name: Create database

community.postgresql.postgresql_db:
 name: "{{ app_name }}"
 become: yes
 become_user: postgres

Scripts: Playbook

Python
Linux, macOS

Python
Linux, macOS,
Windows

Python
Linux, macOS,
Windows

- name: Set up and configure postgres
 hosts: all
 vars_files:

- db_vars.yml

 tasks:

 - name: Start and enable postgres
service: name=postgresql enabled=yes state=started
become: yes

 - name: Configure a new postgresql user
postgresql_privs:

 db: "{{ app_name }}"
 role: "{{ db_user }}"
 privs: ALL
 type: database

become: yes
become_user: postgres
notify:

 - restart postgres

 handlers:
- name: restart postgres

 service: name=postgresql state=restarted
 become: yes

Playbook (YAML)
Módulos

● Unidades de trabajo autosuficientes
en Ansible.

● Son escritos en lenguajes de scripts,
como Python, Perl, Ruby, Bash, etc.

● Son idempotentes.

Inventario
● Describe los nodos que pueden ser

accedidos por Ansible.
● Los nodos pueden asignarse a

grupos.
● Indican la ubicación de las claves

utilizadas por la conexión SSH.

46.231.22.122

[webservers]
foo.example.com
bar.example.com

Inventario

- name: Set up and configure postgres
 hosts: all
 vars_files:

- db_vars.yml

 tasks:

 - name: Start and enable postgres
service: name=postgresql enabled=yes state=started
become: yes

 - name: Configure a new postgresql user
postgresql_privs:

 db: "{{ app_name }}"
 role: "{{ db_user }}"
 privs: ALL
 type: database

become: yes
become_user: postgres
notify:

 - restart postgres

 handlers:

- name: restart postgres
 service: name=postgresql state=restarted
 become: yes

Playbook (YAML)

Playbooks

● Cada libro de jugadas (playbook) contiene una
lista de tareas.

● Las tareas son ejecutadas en orden, contra
cada máquina que encaja con el patrón del
host, para luego seguir con la próxima tarea.

● El objetivo de un Playbook el mapear un grupo
de host a una lista de tareas.

● Los hosts donde fallen las tareas son sacados
de la rotación de las jugadas restantes.

● El objetivo de cada tarea es ejecutar un módulo,
con parámetros muy específicos.

● Se pueden usar variables utilizando el concepto
de plantillas.

● Cada tarea debe tener un nombre, este se
muestra mientras el Playbook se ejecuta.

hosts

variables

tarea

handler

roles/
 common/ # Esta jerarquía representa un "rol"
 tasks/ #
 main.yml # playbook principal, puede incluir otros archivos.
 handlers/ #
 main.yml # archivo con los handlers utilizados en el rol.
 templates/ #
 ntp.conf.j2 # plantillas en formato Jinja 2
 files/ #
 bar.txt # archivos que se pueden enviar a los nodos
 foo.sh # scripts utilizados por el recurso
 vars/ #
 main.yml # variables asociadas al rol
 defaults/ #
 main.yml # variables por defecto
 meta/ #
 main.yml # dependencias del rol
 library/ # se pueden incluir módulos
 module_utils/ # utilerías
 lookup_plugins/ # plugins

 webtier/ # otro rol
 monitoring/ # un rol más
 fooapp/ # último rol

Roles

● Los roles organizan en una
estructura de directorios, los
archivos necesarios para
ejecutar uno o más playbooks
asociados al rol.

● Los nombres son estándar.
● Se debe incluir por lo menos un

directorio.
● Se pueden utilizar a nivel de

tareas, pero lo clásico es a nivel
del playbook:

- hosts: webservers
 roles:
 - common
 - webservers

├── developer
│ ├── deploy.yml
│ ├── group_vars
│ │ └── all
│ ├── hosts
│ └── roles
│ └── developer
│ ├── vars
│ ├── tasks
│ └── templates
└── ssh-keys
 ├── mi_llave.pem
 └── mi_llave2.pem

Estructura de un despliegue

● El playbook inicial se encuentra en la
raíz del folder del despliegue.

● El inventario se encuentra en el
directorio hosts.

● El directorio group_vars incluye las
variables que se utilizan por todos los
grupos.

● Se incluye el directorio roles con la
estructura estándar.

● En un folder externo almacenamos
las claves secretas.

deploy.yml

- name: Configuración para desarrollo en django
 hosts: all
 user: ubuntu
 roles:
 - developer

Ejemplo

Seguiremos los siguientes pasos:

● Arranca una instancia en AWS, Ubuntu 22.04, instancia small, crea un juego de claves (key-pair) en este ejemplo lo
nombraremos como: mi-llave.

● Descarga el archivo .pem asignada en el lanzamiento.

● Recuerda que la clave es secreta.

 Vamos a configurar la instancia recién creada utilizando Ansible

● En caso de estar en una computadora con Windows no podemos ejecutar Ansible localmente.
○ En este ejemplo asumimos que estamos en Windows
○ Como alternativa vamos a utilizar CodeSpaces de GitHub.
○ Crea un nuevo repo a partir de la plantilla: https://github.com/mariosky/django-playbook.
○ Lanza un CodeSpace en tu copia del repositorio.

● Sube tu archivo .pem al directorio ssh-keys.

Prueba conectarte a tu instancia:

/workspaces/django-playbook (main) $ chmod 400 ssh-keys/mi-llave.pem
/workspaces/django-playbook (main) $ ssh -i ssh-keys/mi-llave.pem ubuntu@<ip de tu instancia>

https://github.com/mariosky/django-playbook

Ejemplo

Si te pudiste conectar…

Desconéctate, vamos a instalar Ansible en el controlador (en este caso el CodeSpace)

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py --user
python3 -m pip install --user ansible

En caso de este warning:
WARNING: The scripts ansible, ansible-config, ansible-connection, ansible-console,
ansible-doc, ansible-galaxy, ansible-inventory, ansible-playbook, ansible-pull and
ansible-vault are installed in '/home/ubuntu/.local/bin' which is not on PATH.
Exportamos la variable y revisamos que ya se hizo
export PATH="/home/ubuntu/.local/bin:$PATH"
env | grep PATH

ansible --version

Ejemplo

Vamos a probar Ansible para enviar un comando a la instancia:

Debemos agregar un archivo llamado hosts en la raíz del directorio developer:

web ansible_host=<ip> ansible_user=ubuntu ansible_port=22 ansible_ssh_private_key_file=../ssh-keys/mi-llave.pem

@mariosky ➜ /workspaces/django-playbook/developer $ ansible -i hosts all -m ping
web | SUCCESS => {

"ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"

},
"changed": false,
"ping": "pong"

}

Ejemplo

Vamos a probar Ansible para enviar un comando a la instancia:

Debemos agregar un archivo llamado hosts en la raíz del directorio developer:

[web]

host1 ansible_host=<ip> ansible_user=ubuntu ansible_port=22 ansible_ssh_private_key_file=../ssh-keys/mi-llave.pem

@mariosky ➜ /workspaces/django-playbook/developer $ ansible -i hosts all -m ping
web | SUCCESS => {

"ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"

},
"changed": false,
"ping": "pong"

}

Cambia all por:
web
webs
host1

¿Qué pasa?
Recuerda Grupos,
patrones.

Ejemplo

Podemos utilizar YAML para el inventario
Agregar un archivo llamado hosts.yml en la raíz del directorio developer:

web:

 hosts:

 host1:

 ansible_host: 54.236.46.151

 ansible_user: ubuntu

 ansible_port: 22

 ansible_ssh_private_key_file: /workspaces/django-playbook/ssh-keys/mi-llave.pem

Ejemplo

Ejecutemos un playbook para actualizar el server

@mariosky ➜ /workspaces/django-playbook/developer/play (main) $ ansible-playbook developer.yml -i ../hosts

PLAY [Update Server and Install Dependencies]
**

TASK [Gathering Facts]
**

ok: [host1]

TASK [Add the user developer]

ok: [host1]

TASK [Upgrade]

ok: [host1]

PLAY RECAP ***************************
host1 : ok=8changed=1 unreachable=0 failed=1 skipped=0 rescued=0 ignored=0

Estructura hasta el momento

ansible-playbook deploy.yml -i hosts

@mariosky ➜ /workspaces/django-playbook/developer (main) $ tree
.
├── deploy.yml
├── group_vars
│ └── all
├── hosts
├── hosts.yml
├── play
│ ├── db_vars.yml
│ ├── developer.yml
│ ├── neovim_setup.yml
│ ├── postgres.yml
│ └── server.yml
└── roles

└── common
 ├── handlers
 ├── tasks
 │ └── main.yml
 └── vars
 └── main.yml

Estructura hasta el momento

AWS Instance

Controlador Efímero
CodeSpace

SSH

Python
Ubuntu
Scripts
Keys

Python
PostgreSQL
nvim

Developer PC
Windows
Terminal

SSH

Otras fuentes (inglés)

Módulos de Ansible
https://docs.ansible.com/ansible/latest/collections/index.html

Ejemplo de un despliegue a producción de una app de Django con Ansible y
Fabric.
Automating Django Deployments with Fabric and Ansible – Real Python

Tutorial para principiantes.
Ansible Tutorial for Beginners: Playbook & Examples

Wikipedia en español.
https://es.wikipedia.org/wiki/Ansible_(software)

https://docs.ansible.com/ansible/latest/collections/index.html
https://realpython.com/automating-django-deployments-with-fabric-and-ansible/
https://spacelift.io/blog/ansible-tutorial

