A

Introduccion a las Aplicaciones
Web

Ansible

ANSIBLE

Ansible es una herramienta open source para configurary
administrar una o muchas computadoras.

Gestion de la configuracién: La informacion que describe el software y hardware

de una empresa.

Inventario

[webservers]
foo.example.com
bar.example.com

Scripts: Playbook

- name: Create database

community.postgresql.postgresql_db:

name: "{{ app_name }}"
become: yes
become_user: postgres

Images by OpenClipart-Vectors from Pixabay

Control de versiones.

Actualizaciones a los paquetes de software instalados.
Direcciones de red de los dispositivos de hardware.
Instalacion y configuracién de software y componentes.

foo.example.com

SSH
Python
Linux, macOS,
Windows
SSH

Controlador
Python
Linux, macOS

bar.example.com

Python
Linux, macOS,
Windows

Médulos
e Unidades de trabajo autosuficientes
en Ansible.

e Son escritos en lenguajes de scripts,
como Python, Perl, Ruby, Bash, etc.
e Son idempotentes.

Inventario
e Describe los nodos que pueden ser
accedidos por Ansible.
e Los nodos pueden asignarse a
grupos.
e Indican la ubicacién de las claves
utilizadas por la conexion SSH.

Inventario

46.231.22.122

[webservers]
foo.example.com
bar.example.com

Playbook (YAML)

- name: Set up and configure postgres
hosts: all
vars_files:
- db_vars.yml

tasks:

- name: Start and enable postgres
service: name=postgresql enabled=yes state=started
become: yes

- name: Configure a new postgresql user
postgresql_privs:
db: "{{ app_name }}"
role: "{{ db_user }}"
privs: ALL
type: database
become: yes
become_user: postgres
notify:
- restart postgres

handlers:
- name: restart postgres
service: name=postgresql state=restarted
become: yes

Playbook (YAML)

Playbooks

- name: Set up and configure pos
hosts: all

vars_files:

® (Cada libro de jugadas (playbook) contiene una
-dbvarsyml —— |

lista de tareas.

® |astareas son ejecutadas en orden, contra tasks:
cada maquina que encaja con el patron del _hame: Start and enable postgres
host, para luego seguir con la proxima tarea. service: name=postgresql enabled=yes state=started
® El objetivo de un Playbook el mapear un grupo become: yes
de host a una lista de tareas. - name: Configure a new postgresql user
® Los hosts donde fallen las tareas son sacados POStgreSql_PriVSZ) |
de la rotacion de las jugadas restantes. :l:l;:{f{{agt::ze}}}"}
® El objetivo de cada tarea es ejecutar un médulo, privs: ALL
con parametros muy especificos. become;tf,':? fataoase
® Se pueden usar variables utilizando el concepto become_user: postgres
notify:

de plantillas.
- restart postgres

[Cada tarea debe tener un nombre, este se

muestra mientras el Playbook se ejecuta. handlers:

- name: restart postgres
service: name=postgresql state=restarted
become: yes

Roles

e Losroles organizan en una
estructura de directorios, los
archivos necesarios para
ejecutar uno o mas playbooks
asociados al rol.

e Los nombres son estandar.

e Se debe incluir por lo menos un
directorio.

e Se pueden utilizar a nivel de
tareas, pero lo clasico es a nivel
del playbook:

- hosts: webservers
roles:
- common
- webservers

roles/
common/
tasks/
main.yml
handlers/
main.yml
templates/
ntp.conf.j2
files/
bar.txt
foo.sh
vars/
main.yml
defaults/
main.yml
meta/
main.yml
library/
module_utils/
lookup_plugins/

webtier/
monitoring/
fooapp/

B T T T T T T T T T T T T T

*

Esta jerarquia representa un "rol"

playbook principal, puede incluir otros archivos.

archivo con los handlers utilizados en el rol.
plantillas en formato Jinja 2

archivos que se pueden enviar a los nodos
scripts utilizados por el recurso

variables asociadas al rol
variables por defecto

dependencias del rol

se pueden incluir mddulos
utilerias

plugins

otro rol
un rol mas
Ultimo rol

Estructura de un despliegue

El playbook inicial se encuentra en la
raiz del folder del despliegue.

El inventario se encuentra en el
directorio hosts.

El directorio group_vars incluye las
variables que se utilizan por todos los
grupos.

Se incluye el directorio roles conla
estructura estandar.

En un folder externo almacenamos
las claves secretas.

— developer
—— deploy.yml
—— group_vars
L— a11
—— hosts
— roles
L— developer
—— vars
—— tasks
—— templates

L— ssh-keys
—— mi_llave.pem
—— mi_llave2.pem

deploy.ymi

- name: Configuracion para desarrollo en django
hosts: all
user: ubuntu
roles:
- developer

Seguiremos los siguientes pasos:

® Arranca una instancia en AWS, Ubuntu 22.04, instancia small, crea un juego de claves (key-pair) en este ejemplo lo
nombraremos como: mi-llave.

Descarga el archivo .pem asignada en el lanzamiento.

Recuerda que la clave es secreta.

Vamos a configurar la instancia recién creada utilizando Ansible

® En caso de estar en una computadora con Windows no podemos ejecutar Ansible localmente.
En este ejemplo asumimos que estamos en Windows

Como alternativa vamos a utilizar CodeSpaces de GitHub.

Crea un nuevo repo a partir de la plantilla: https://github.com/mariosky/django-playbook.
o Lanza un CodeSpace en tu copia del repositorio.

o O O

® Sube tu archivo .pem al directorio ssh-keys.

Prueba conectarte a tu instancia:

/workspaces/django-playbook (main) $ chmod 400 ssh-keys/mi-llave.pem

/workspaces/django-playbook (main) $ ssh -i ssh-keys/mi-llave.pem ubuntu@<ip de tu instancia>

https://github.com/mariosky/django-playbook

Si te pudiste conectar...

Desconéctate, vamos a instalar Ansible en el controlador (en este caso el CodeSpace)

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py --user
python3 -m pip install --user ansible

En caso de este warning:
WARNING: The scripts ansible, ansible-config, ansible-connection, ansible-console,

ansible-doc, ansible-galaxy, ansible-inventory, ansible-playbook, ansible-pull and
ansible-vault are installed in '/home/ubuntu/.local/bin' which is not on PATH.
Exportamos la variable y revisamos que ya se hizo

ansible --version

Ejemplo

Vamos a probar Ansible para enviar un comando a la instancia:

Debemos agregar un archivo llamado hosts en la raiz del directorio developer:

web ansible_host=<ip> ansible_user=ubuntu ansible_port=22 ansible_ssh_private_key file=../ssh-keys/mi-1llave.pem

@mariosky =» /workspaces/django-playbook/developer $ ansible -i hosts all -m ping
web | SUCCESS =>{

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python3"

},

"changed": false,

"ping": "pong"

Vamos a probar Ansible para enviar un comando a la instancia:

Debemos agregar un archivo llamado hosts en la raiz del directorio developer:

[web]

hostl ansible_host=<ip> ansible_user=ubuntu ansible_port=22 ansible _ssh_private_key file=../ssh-keys/mi-1llave.pem

mariosky =¥ /workspaces/django-playbook/developer $ ansible -i hosts all -m pin
@ y p jango-play per $ Ping S bor:

web | SUCCESS => {
"ansible_facts": { web
"discovered_interpreter_python": "/usr/bin/python3" ‘r/]\’oeslfﬁ

},

"changed": false, ; Qué pasa?

[1] in Il: L1 On " 6 .

ping . "pong Recuerda Grupos,
patrones.

Podemos utilizar YAML para el inventario
Agregar un archivo llamado hosts.yml en la raiz del directorio developer:

web:
hosts:
hostl:
ansible host: 54.236.46.151
ansible user: ubuntu
ansible_port: 22

ansible_ssh_private_key file

: /workspaces/django-playbook/ssh-keys/mi-1lave.pem

Ejecutemos un playbook para actualizar el server

@mariosky =» /workspaces/django-playbook/developer/play (main) $ ansible-playbook developer.yml -i ../hosts

PLAY [Update Server and Install Dependencies]
3k 3k 3k sk Sk sk ok k 3k sk sk 3k 3k 3k 3k 5k ok 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3K 3K 3K 3K 3K K K K K K K K K K K K K KKK KKK KKK KKK KKK KKK KKK KK
%k %k k

TASK [Gathering Facts]
3k 3k 3k sk 3k 3k 3k 5k 3k ok 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3K 3K 3K 3K 3K K K K K K K K K K K K KKK KKK KKK KKK KKK KKK KKK KKK
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k >k %k

ok: [host1]

TASK [Add the user developer]

>k >k 5k 3k >k ok ok ok >k ok ok ok ok ok ok >k >k ok ok sk ok ok ok >k ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok sk ok ok ok ok ok ok ok >k ok ok Sk ok ok ok ok sk ok ok >k ok ok ok >k ok ok Sk ok ok ok ok ok ok ok Sk >k ok ok sk ok ok ok >k ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk kokook

ok: [host1]

TASK [Upgrade]

>k >k 5k 3k >k >k ok ok >k ok ok ok ok ok ok >k >k ok ok sk ok ok ok >k ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok >k ok ok sk ok ok ok Sk ok ok ok Sk ok ok ok >k ok ok Sk ok ok ok ok ok ok ok sk >k ok ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk kokook

ok: [host1]

PLAY RECAP 3k 3 3k 3k 3k >k 3k 3k %k >k 5k 3k >k >k 5k 3k >k 5k 3k >k %k 5k ok >k Kk >k

host1l : ok=8changed=1 unreachable=0 failed=1 skipped=0 rescued=0 ignored=0

Estructura hasta el momento

@mariosky =» /workspaces/django-playbook/developer (main) $ tree

—— deploy.yml
—— group_vars
L— a11
—— hosts
—— hosts.yml
— play
—— db_vars.yml
—— developer.yml
—— neovim_setup.yml
—— postgres.yml
—— server.yml
L— roles

L— common
—— handlers
—— tasks

| L— main.yml
vars

L— main.yml

ansible-playbook deploy.yml -i hosts

Estructura hasta el momento

AWS Instance

Python
PostgreSQL
nvim

Controlador Efimero
CodeSpace

Python
Ubuntu SSH

Scripts
Keys

Developer PC

Windows
Terminal

Otras fuentes (inglés)

Modulos de Ansible
https://docs.ansible.com/ansible/latest/collections/index.html

Ejemplo de un despliegue a produccion de una app de Django con Ansible y

Fabric.
Automating Django Deployments with Fabric and Ansible — Real Python

Tutorial para principiantes.
Ansible Tutorial for Beginners: Playbook & Examples

Wikipedia en espaiiol.
https://es.wikipedia.org/wiki/Ansible_(software)

https://docs.ansible.com/ansible/latest/collections/index.html
https://realpython.com/automating-django-deployments-with-fabric-and-ansible/
https://spacelift.io/blog/ansible-tutorial

